245 research outputs found

    Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation

    Get PDF
    A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer- ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Understanding the Return of Genomic Sequencing Results Process: Content Review of Participant Summary Letters in the eMERGE Research Network

    Get PDF
    A challenge in returning genomic test results to research participants is how best to communicate complex and clinically nuanced findings to participants in a manner that is scalable to the large numbers of participants enrolled. The purpose of this study was to examine the features of genetic results letters produced at each Electronic Medical Records and Genomics (eMERGE3) Network site to assess their readability and content. Letters were collected from each site, and a qualitative analysis of letter content and a quantitative analysis of readability statistics were performed. Because letters were produced independently at each eMERGE site, significant heterogeneity in readability and content was found. The content of letters varied widely from a baseline of notifying participants that results existed to more detailed information about positive or negative results, as well as materials for sharing with family members. Most letters were significantly above the Centers for Disease Control-suggested reading level for health communication. While continued effort should be applied to make letters easier to understand, the ongoing challenge of explaining complex genomic information, the implications of negative test results, and the uncertainty that comes with some types of test and result makes simplifying letter text challenging

    Observation of a Charmed Baryon Decaying to D0p at a Mass Near 2.94 GeV/c2

    Get PDF
    A search for charmed baryons decaying to D 0 p reveals two states: the Λ c ( 2880 ) + baryon and a previously unobserved state at a mass of [ 2939.8 ± 1.3 ( stat ) ± 1.0 ( syst ) ]     MeV / c 2 and with an intrinsic width of [ 17.5 ± 5.2 ( stat ) ± 5.9 ( syst ) ]     MeV . Consistent and significant signals are observed for the K − π + and K − π + π − π + decay modes of the D 0 in 287     fb − 1 annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D + p spectrum of doubly charged partners. The mass and intrinsic width of the Λ c ( 2880 ) + baryon and relative yield of the two baryons are also measured

    THE USE OF INFRARED SPECTROSCOPY TO DETERMINE THE KINETICS OF POLYPEPTIDE SYNTHESIS

    No full text
    Author Institution: Children's Cancer Research Foundation, The Children's Medical Center; Chemical Research Laboratory, Polaroid CorporationThe polymerization of N-carboxyanhydrides of a-amino acids to yield high molecular weight polypeptides may be initiated by small amounts of basic compounds. Both monomer and polymer (N-carboxyanhydride and polypeptide respectively) each show two strong absorption bands. The monomer hands, associated with the C-O groups of the anhydride, are observed at 1860 and 1790cm11790 cm^{-1}; the polymer bands, characteristic of secondary amide groups, lie at 1655 and 1550cm11550 cm^{-1}. In the region 1500 to 1900cm11900 cm^{-1} the monomer shows no absorption where the polymer absorbs and vice versa. Thus, one may follow the course of the reaction with time, either by measuring the decrease in the intensity of the monomer bands, or by measuring the increase in the intensity of the polymer bands. Data will be presented showing the use of infrared spectroscopy to determine the kinetics of the polymerisation of several amino acid anhydrides in solution. The advantages and limitations of the method will be discusse
    corecore