730 research outputs found

    The pulling force of a single DNA molecule condensed by spermidine

    Full text link
    In a recent experiment, a single DNA double helix is stretched and relaxed in the presence of spermidine, a short positive polyelectrolyte, and the pulling force is measured as a function of DNA extension. In a certain range of spermidine concentration, a force plateau appears whose value shows maximum as a function of spermidine concentration. We present a quantitative theory of this plateau force based on the theory of reentrant condensation and derive almost parabolic behavior of the plateau force as a function of the logarithm of the spermidine concentration in the range of condensation. Our result is in good agreement with experimental data.Comment: 4 pages, 4 figures. Small change in the text, no change in result

    Attractive Interactions Between Rod-like Polyelectrolytes: Polarization, Crystallization, and Packing

    Full text link
    We study the attractive interactions between rod-like charged polymers in solution that appear in the presence of multi-valence counterions. The counterions condensed to the rods exhibit both a strong transversal polarization and a longitudinal crystalline arrangement. At short distances between the rods, the fraction of condensed counterions increases, and the majority of these occupy the region between the rods, where they minimize their repulsive interactions by arranging themselves into packing structures. The attractive interaction is strongest for multivalent counterions. Our model takes into account the hard-core volume of the condensed counterions and their angular distribution around the rods. The hard core constraint strongly suppresses longitudinal charge fluctuations.Comment: 4 figures, uses revtex, psfig and epsf. The new version contains a different introduction, and the bibliography has been expande

    Phase diagram of solution of oppositely charged polyelectrolytes

    Full text link
    We study a solution of long polyanions (PA) with shorter polycations (PC) and focus on the role of Coulomb interaction. A good example is solutions of DNA and PC which are widely studied for gene therapy. In the solution, each PA attracts many PCs to form a complex. When the ratio of total charges of PA and PC in the solution, xx, equals to 1, complexes are neutral and they condense in a macroscopic drop. When xx is far away from 1, complexes are strongly charged. The Coulomb repulsion is large and free complexes are stable. As xx approaches to 1, PCs attached to PA disproportionate themselves in two competing ways. One way is inter-complex disproportionation, in which PCs make some complexes neutral and therefore condensed in a macroscopic drop while other complexes become even stronger charged and stay free. The other way is intra-complex disproportionation, in which PCs make one end of a complex neutral and condensed in a small droplet while the rest of the complex forms a strongly charged tail. Thus each complex becomes a "tadpole". These two ways can also combine together to give even lower free energy. We get a phase diagram of PA-PC solution in a plane of xx and inverse screening radius of the monovalent salt, which includes phases or phase coexistence with both kinds of disproportionation.Comment: 29 pages, 10 figures. Major change in results and tex

    Onset of DNA Aggregation in Presence of Monovalent and Multivalent Counterions

    Get PDF
    We address theoretically aggregation of DNA segments by multivalent polyamines such as spermine and spermidine. In experiments, the aggregation occurs above a certain threshold concentration of multivalent ions. We demonstrate that the dependence of this threshold on the concentration of DNA has a simple form. When the DNA concentration c_DNA is smaller than the monovalent salt concentration, the threshold multivalent ion concentration depends linearly on c_DNA, having the form alpha c_DNA + beta. The coefficients alpha and beta are related to the density profile of multivalent counterions around isolated DNA chains, at the onset of their aggregation. This analysis agrees extremely well with recent detailed measurements on DNA aggregation in the presence of spermine. From the fit to the experimental data, the number of condensed multivalent counterions per DNA chain can be deduced. A few other conclusions can then be reached: i) the number of condensed spermine ions at the onset of aggregation decreases with the addition of monovalent salt; ii) the Poisson-Boltzmann theory over-estimates the number of condensed multivalent ions at high monovalent salt concentrations; iii) our analysis of the data indicates that the DNA charge is not over-compensated by spermine at the onset of aggregation.Comment: 12 pages, 8 figures. Biophysical Journal 2003, in pres

    Extreme weather events and the energy sector in 2021

    Get PDF
    In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heatwave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of USD. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission and consumption, and summarize estimations of economic losses

    Collapse of Stiff Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length.Comment: 4 pages RevTex, 3 ps figures included using epsf, final version as appeared in PR

    Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84

    Get PDF
    The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed

    Efficacy of lisdexamfetamine dimesylate throughout the day in children and adolescents with attention-deficit/hyperactivity disorder:results from a randomized, controlled trial

    Get PDF
    Lisdexamfetamine dimesylate (LDX) is a long-acting, prodrug stimulant therapy for patients with attention-deficit/hyperactivity disorder (ADHD). This randomized placebo-controlled trial of an optimized daily dose of LDX (30, 50 or 70 mg) was conducted in children and adolescents (aged 6–17 years) with ADHD. To evaluate the efficacy of LDX throughout the day, symptoms and behaviors of ADHD were evaluated using an abbreviated version of the Conners’ Parent Rating Scale-Revised (CPRS-R) at 1000, 1400 and 1800 hours following early morning dosing (0700 hours). Osmotic-release oral system methylphenidate (OROS-MPH) was included as a reference treatment, but the study was not designed to support a statistical comparison between LDX and OROS-MPH. The full analysis set comprised 317 patients (LDX, n = 104; placebo, n = 106; OROS-MPH, n = 107). At baseline, CPRS-R total scores were similar across treatment groups. At endpoint, differences (active treatment − placebo) in least squares (LS) mean change from baseline CPRS-R total scores were statistically significant (P < 0.001) throughout the day for LDX (effect sizes: 1000 hours, 1.42; 1400 hours, 1.41; 1800 hours, 1.30) and OROS-MPH (effect sizes: 1000 hours, 1.04; 1400 hours, 0.98; 1800 hours, 0.92). Differences in LS mean change from baseline to endpoint were statistically significant (P < 0.001) for both active treatments in all four subscales of the CPRS-R (ADHD index, oppositional, hyperactivity and cognitive). In conclusion, improvements relative to placebo in ADHD-related symptoms and behaviors in children and adolescents receiving a single morning dose of LDX or OROS-MPH were maintained throughout the day and were ongoing at the last measurement in the evening (1800 hours)

    Coordination of photosynthetic traits across soil and climate gradients

    Get PDF
    "Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients
    • …
    corecore