4,237 research outputs found

    Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    Get PDF
    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K

    Wigner crystal model of counterion induced bundle formation of rod-like polyelectrolytes

    Full text link
    A simple electrostatic theory of condensation of rod-like polyelectrolytes under influence of polyvalent ions is proposed. It is based on the idea that Manning condensation of ions results in formation of the Wigner crystal on a background of a bundle of rods. It is shown that, depending on a single dimensionless parameter, this can be the densely packed three-dimensional Wigner crystal or the two-dimensional crystal on the rod surfaces. For DNA the location of charge on the spiral results in a model of the one-dimensional Wigner crystal. It is also argued that the Wigner crystal idea can be applied to self-assembly of other polyelectrolytes, for example, colloids and DNA-lipid complexes.Comment: 4 pages; typos corrected, references adde

    Influence of opposition team formation on physical and skill-related performance in a professional soccer team

    Get PDF
    This study examined the influence of opposition team formation on physical and skill-related performance in a professional soccer team. Performance in forty-five French League 1 matches played over three competitive seasons (2007-08, 2008-09, and 2009-10) was analysed using multi-camera computerised tracking. Players (n=21) in the reference team (using a 4-3-3/4-5-1 formation) were analysed in matches against three opposition team formations: 4-4-2 (11 games), 4-3-3/4-5-1 (16 games) and 4-2-3-1 (18 games). Performance was compared for defending and midfield units as a whole and individually across four positions: fullbacks, central-defenders and central- and wide-midfielders. Collectively, players covered a greater total distance (p<0.05) and distance in low/moderate-intensity running (0-14.3km/h) (p<0.05) in matches against a 4-2-3-1 compared to a 4-4-2 formation. Distance covered in high-intensity (14.4-19.7km/h) and very high-intensity running (≥19.8km/h) was not affected by opposition formation. In contrast, players covered more distance in total high-intensity performance (≥14.4km/h) when the reference team was in possession against a 4-4-2 compared to a 4-2-3-1 formation (p<0.05) while more distance was run at these speeds when the reference team was out of possession against a 4-2-3-1 (p<0.01) and a 4-3-3 (p<0.05) compared to a 4-4-2 formation. Players ran less distance at low/moderate intensities in the second- versus first-half of matches against all three formations (p<0.01 to p<0.05) whereas total distance and high-intensity performance was unaffected. None of the measures of physical performance across the individual playing positions were affected by opposition team formation. Skill-related performance varied according to opposition formation: players as a whole performed more passes versus a 4-4-2 than a 4-2-3-1 (p<0.01), ground and aerial duels versus a 4-2-3-1 compared to a 4-4-2 (both p<0.01); 1-touch passes versus a 4-2-3-1 compared to a 4-4-2 (p<0.01) and a 4-3-3/4-5-1 (p<0.05). The mean number of touches per possession was highest versus a 4-4-2 compared to a 4-3-3/4-5-1 (p<0.01) and a 4-2-3-1 (p<0.01). While skill-related performance across the four individual playing positions was generally unaffected by opposition team formation, mean pass length was greater in central-midfielders against a 4-4-2 compared to 4-3-3/4-5-1 (p<0.05) and 4-2-3-1 (p<0.01) formations. In general, these findings suggest that physical performance in the reference team was not greatly affected by opposition team formation. In contrast, skill-related demands varied substantially according to opponent formation and may have consequences for tactical and technical preparation and team selection policies

    Do sleep difficulties exacerbate deficits in sustained attention following traumatic brain injury?

    Get PDF
    Sustained attention has been shown to be vulnerable following traumatic brain injury (TBI). Sleep restriction and disturbances have been shown to negatively affect sustained attention. Sleep disorders are common but under-diagnosed after TBI. Thus, it seems possible that sleep disturbances may exacerbate neuropsychological deficits for a proportion of individuals who have sustained a TBI. The aim of this prospective study was to examine whether poor sleepers post-TBI had poorer sustained and general attentional functioning than good sleepers post-TBI. Retrospective subjective, prospective subjective, and objective measures were used to assess participants’ sleep. The results showed that the poor sleep group had significantly poorer sustained attention ability than the good sleep group. The differences on other measures of attention were not significant. This study supports the use of measures that capture specific components of attention rather than global measures of attention, and highlights the importance of assessing and treating sleep problems in brain injury rehabilitation

    Optimal Control of Superconducting N-level quantum systems

    Full text link
    We consider a current-biased dc SQUID in the presence of an applied time-dependent bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that of a quantum particle trapped in a 11-D anharmonic potential, subject to external time-dependent control fields, {\it i.e.} a driven multilevel quantum system. The problem of finding the required time-dependent control field that will steer the system from a given initial state to a desired final state at a specified final time is formulated in the framework of optimal control theory. Using the spectral filter technique, we show that the selected optimal field which induces a coherent population transfer between quantum states is represented by a carrier signal having a constant frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal solution to parameter perturbations is also addressed

    Exploring gravitational theories beyond Horndeski

    Get PDF
    We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in arXiv:1404.6495. As they generalize Horndeski theories, or "generalized" galileons, we call them G3^3. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G3^3 into Horndeski theories.Comment: 33 pages, added comments and corrected typos as in JCAP versio

    The Effects of Stacking on the Configurations and Elasticity of Single Stranded Nucleic Acids

    Full text link
    Stacking interactions in single stranded nucleic acids give rise to configurations of an annealed rod-coil multiblock copolymer. Theoretical analysis identifies the resulting signatures for long homopolynucleotides: A non monotonous dependence of size on temperature, corresponding effects on cyclization and a plateau in the extension force law. Explicit numerical results for poly(dA) and poly(rU) are presented.Comment: 4 pages and 2 figures. Accepted in Phys. Rev. E Rapid Com

    Gaussian copula modeling of extreme cold and weak-wind events over Europe conditioned on winter weather regimes

    Get PDF
    A transition to renewable energy is needed to mitigate climate change. In Europe, this transition has been led by wind energy, which is one of the fastest growing energy sources. However, energy demand and production are sensitive to meteorological conditions and atmospheric variability at multiple time scales. To accomplish the required balance between these two variables, critical conditions of high demand and low wind energy supply must be considered in the design of energy systems. We describe a methodology for modeling joint distributions of meteorological variables without making any assumptions about their marginal distributions. In this context, Gaussian copulas are used to model the correlated nature of cold and weak-wind events. The marginal distributions are modeled with logistic regressions defining two sets of binary variables as predictors: four large-scale weather regimes (WRs) and the months of the extended winter season. By applying this framework to ERA5 data, we can compute the joint probabilities of co-occurrence of cold and weak-wind events on a high-resolution grid .Our results show that (a) WRs must be considered when modeling cold and weak-wind events, (b) it is essential to account for the correlations between these events when modeling their joint distribution, (c) we need to analyze each month separately, and (d) the highest estimated number of days with compound events are associated with the negative phase of the North Atlantic Oscillation (3 days on average over Finland, Ireland, and Lithuania in January, and France and Luxembourg in February) and the Scandinavian blocking pattern (3 days on average over Ireland in January and Denmark in February). This information could be relevant for application in sub-seasonal to seasonal forecasts of such events
    corecore