3,894 research outputs found

    Searches for Clean Anomalous Gauge Couplings effects at present and future e+ee^+e^- colliders

    Get PDF
    We consider the virtual effects of a general type of Anomalous (triple) Gauge Couplings on various experimental observables in the process of electron-positron annihilation into a final fermion-antifermion state. We show that the use of a recently proposed "ZZ-peak subtracted" theoretical description of the process allows to reduce substantially the number of relevant parameters of the model, so that a calculation of observability limits can be performed in a rather simple way. As an illustration of our approach, we discuss the cases of future measurements at LEP2 and at a new 500 GeV linear collider.Comment: 23 pages incl. 5 figures (e-mail [email protected]

    A paradox in community detection

    Full text link
    Recent research has shown that virtually all algorithms aimed at the identification of communities in networks are affected by the same main limitation: the impossibility to detect communities, even when these are well-defined, if the average value of the difference between internal and external node degrees does not exceed a strictly positive value, in literature known as detectability threshold. Here, we counterintuitively show that the value of this threshold is inversely proportional to the intrinsic quality of communities: the detection of well-defined modules is thus more difficult than the identification of ill-defined communities.Comment: 5 pages, 3 figure

    Doctrines et réalité(s) du bonheur

    Get PDF

    Mechanical Unfolding of a Simple Model Protein Goes Beyond the Reach of One-Dimensional Descriptions

    Get PDF
    We study the mechanical unfolding of a simple model protein. The Langevin dynamics results are analyzed using Markov-model methods which allow to describe completely the configurational space of the system. Using transition path theory we also provide a quantitative description of the unfolding pathways followed by the system. Our study shows a complex dynamical scenario. In particular, we see that the usual one-dimensional picture: free-energy vs end-to-end distance representation, gives a misleading description of the process. Unfolding can occur following different pathways and configurations which seem to play a central role in one-dimensional pictures are not the intermediate states of the unfolding dynamics.Comment: 10 pages, 6 figure

    Longitudinal Polarization at future e+ee^+e^- Colliders and Virtual New Physics Effects

    Get PDF
    The theoretical merits of longitudinal polarization asymmetries of electron-positron annihilation into two final fermions at future colliders are examined, using a recently proposed theoretical description. A number of interesting features, valid for searches of virtual effects of new physics, is underlined, that is reminiscent of analogous properties valid on top of ZZ resonance. As an application to a concrete example, we consider the case of a model with triple anomalous gauge couplings and show that the additional information provided by these asymmetries would lead to a drastic reduction of the allowed domain of the relevant parameters.Comment: 18 pages and 1 figure. e-mail: [email protected]

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    The Identity Correspondence Problem and its Applications

    Get PDF
    In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post's Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: "Is it decidable for a finitely generated semigroup S of square integral matrices whether or not the identity matrix belongs to S?". We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several question for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.Comment: We have made some proofs clearer and fixed an important typo from the published journal version of this article, see footnote 3 on page 1

    TLEP, first step in a long-term vision for HEP

    Full text link
    The discovery of H(126) has renewed interest in circular e+e- colliders that can operate as Higgs factories, which benefit from three unique characteristics: i) high luminosity and reliability, ii) the availability of several interaction points, iii) superior beam energy accuracy. TLEP is an e+e- storage ring of 80-km circumference that can operate with very high luminosity from the Z peak (90 GeV) to the top quark pair threshold (350 GeV). It can achieve transverse beam polarization at the Z peak and WW threshold, giving it unparalleled accuracy on the beam energy. A preliminary study indicates that an 80 km tunnel could be constructed around CERN. Such a tunnel would allow a 100 TeV proton-proton collider to be established in the same ring (VHE-LHC), offering a long term vision.Comment: This is a contribution to the the Snowmass process 2013: Frontier Capabilitie

    Three-photon detachment of electrons from the fluorine negative ion

    Get PDF
    Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory (Gribakin and Kuchiev 1997 {Phys. Rev. A} {\bf 55} 3760) this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.Comment: 10 pages, two figures, Latex, IOP styl
    corecore