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Mechanical unfolding of a simple model protein goes beyond the reach

of one-dimensional descriptions
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We study the mechanical unfolding of a simple model protein. The Langevin dynamics results are
analyzed using Markov-model methods which allow to describe completely the configurational space
of the system. Using transition-path theory we also provide a quantitative description of the unfolding
pathways followed by the system. Our study shows a complex dynamical scenario. In particular, we
see that the usual one-dimensional picture: free-energy vs end-to-end distance representation, gives a
misleading description of the process. Unfolding can occur following different pathways and config-
urations which seem to play a central role in one-dimensional pictures are not the intermediate states
of the unfolding dynamics. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896620]

. INTRODUCTION

The characterization of folding and unfolding energy
landscapes of biomolecules is a major problem in biophysics
which sheds light onto biomolecules’ role and function.'= In
this effort, the emergence of single-molecule techniques that
let the manipulation of individual molecules has opened a new
wide field, allowing to monitor unfolding processes by look-
ing into a single specimen.5

In force-pulling experiments, the one-dimensional de-
scription is usually adopted, as force is considered to im-
pose a preferred direction that appears as the slowest de-
gree of freedom compared with the remaining ones. In this
sense, optical tweezers,%’ magnetic tweezers®® or AFM!0-12
experiments are usually analyzed considering the end-to-end
distance as the proper reaction coordinate, with a well de-
veloped force spectroscopy theory'>~'® that allows stating
predictions grounded on this hypothesis. Also, recent stud-
ies of single molecule Foester resonant energy transfer flu-
orescence study thermal unfolding by tracking the radius of
gyration of individual molecules.'*!'* Computational works
similarly take advantage of this simple description, choosing
reaction coordinates such as the fraction of native contacts
0,922 the RMSD from the native structure?® or the Prin-
cipal Components.>*?’ Nevertheless, this tempting approach
must be used with great care, as some energy minima which
represent relevant metastable conformations and the barriers
connecting such states may be hidden when projecting the
actual large-dimensional free energy landscape onto a low-
dimensional subspace. Besides, one-dimensional descriptions
might suggest misleading unfolding pathways, consequence
of this projection restriction.

Some recent studies try to address this problem by
means of different strategies. It has been reported, for in-
stance, that the mechanical unfolding of the Green Fluores-
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cent Protein (GFP) can occur via two distinct routes which
cannot be distinguished by a one-dimensional end-to-end
representation.28‘30 Also, new procedures, such as the intro-
duction of mutations, have been suggested in order to obtain
more reliable information from single-molecule experiments.
Engineered disulfide bonds can create constraints that block
an unfolding pathway, allowing their detection.’*? In addi-
tion, the substitution of key aminoacids in the sequence might
destabilize the intermediate states,® altering the unfolding
mechanism.

In order to explore such aspects, we choose a coarse-
grained model protein®*3 and study it through a force-clamp
protocol. The output of the simulations will be analyzed
through two different approaches, allowing a comparison be-
tween the conclusions yielded by each. First, we build one
dimensional free-energy profiles along the end-to-end dis-
tance and the fraction of native contacts. Second, we describe
the configurational space of the system by using Markov-
Model methods**~*7 and obtain the unfolding paths applying
transition-path theory.*-5!

Although recent works cast doubt on a simple low di-
mensional description of thermal (un)folding processes,?*>?
the one-dimensional approach is usually adopted for mechan-
ical unfolding processes, due to the privileged direction im-
posed by the force.!>!” In the case studied here, this fact, to-
gether with the simplicity of the protein structure, apparently
point to a valid one-dimensional description of the unfold-
ing process. Nevertheless, we find out that one-dimensional
profiles lead to deceptive conclusions. In particular, these
profiles suggest the existence of a metastable state (the half-
stretched configuration, see Fig. 1) as a mechanical inter-
mediate between the native and stretched states. Opposed
to this, we find that unfolding occurs through two major
routes defined by the existence of two different mechani-
cal intermediates, not identified in the one-dimensional de-
scription. Although very stable, the half-stretched configu-
ration plays a marginal role in the unfolding process. This
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FIG. 1. Potential of mean force as a function of the end-to-end distance &
and the fraction of native contacts Q.

multi-path picture can never be captured through a one-
dimensional description. In addition we are able to systemati-
cally define all the individual unfolding pathways calculating
their relative weight in the dynamics and yielding a complete
and quantitative vision of the protein’s landscape that com-
pletes the picture described in previous studies on the same
system, 384142

Il. MODEL

The BLN model**? is a coarse grained off-lattice pro-
tein model in which the residues are represented by “col-
ored” beads, hydrophobic (B), hydrophilic (L), and neu-
tral (N). Due to its rich behavior, despite its simplicity,
this model has been widely studied, with several modifi-
cations through time.’¢-3%41:42 In particular, the 46-residue
sequence (BLN-46) ByN;(LB),N;ByN;(LB);L folds into a
four-strand B barrel showing nonetheless a frustrated ground
state.’ From now on, we number the B strands, be-
ing B, the N-terminal all-hydrophobic strand and 8, the
C-terminal.

The potential terms we use account for a stiff nearest-
neighbor harmonic potential, a three-body bending interac-
tion, a four-body dihedral interaction and a sequence depen-
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where ry is the distance between residues i and j, 6 is the
bending angle, and ¢ is the dihedral angle. Note that in this
model, unlike Go-models, the Lennard-Jones potential does
not depend on the native contacts but includes sequence-
dependent parameters. For parameter values see Ref. 41 and
Appendix A.

We simulate the system by integrating Langevin equa-
tions of motion at constant temperature 7 and following a
force-clamp protocol, where monomer 1 is fixed while a con-
stant force is applied to the last monomer, 46, through a linear
spring. Such equations are given by

mi; = =yt = V,;Vp, v +F, +1,, 2)

1

where m is each residue unitary mass, y is the friction coeffi-
cient, F is the external force applied in the z direction, and 7,
is Gaussian white noise of zero average, holding fluctuation-
dissipation theorem (n;n;) = 2Ty 8(t — 1')3;.

This model protein has a well characterized unfolding
transition (see Ref. 41 and Appendix C) at T, and unfolds
mechanically at F';;. We work from now on at 7= 0.55T, and
F = 0.8F; in order to maximize the number of configurations
visited by the system. Lower forces would not populate the
unfolded state while above F; the unfolding would be irre-
versible.

ill. METHODS

We present here the different methods use to analyze the
simulated trajectories in order to understand the mechanical
unfolding scenario of our model system.

A. Potential of mean force

The Potential of Mean Force (PMF) is a low dimensional
(typically one-dimensional) characterization of the free en-
ergy landscape of a system, which relies on the choice of a re-
action coordinate X. The PMF is simply F/k,T = —log P(X),
where P(X) is the probability density of the chosen reaction
coordinate X.

We will explore the PMF of the system (Sec. IV A) by
using two different reaction coordinates. As the mechani-
cal force imposes a privileged direction, the end-to-end dis-
tance £ = |ry — r,| appears as a natural choice. This mag-
nitude is indeed widely used in most single molecule force
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spectroscopy applications.®!%333* Additionally, we use the
fraction of native contacts Q,'>?° often reported in computa-
tional applications as a good magnitude for describing protein
unfolding, based on the importance of topology on protein
structure.

B. Principal components analysis

Principal Component Analysis (PCA) is a standard sta-
tistical method for reducing the dimensionality of a com-
plex system such as biological molecule.>>” PCA performs
a linear transformation by diagonalizing the covariance ma-
trix C; ;= ;) — (3:){y;), removing thus all internal corre-
lations. The Principal Components (PCs) g; are calculated as
the projection of the trajectory onto each eigenspace. If we
order the eigenvalues, the first largest PCs contain most of the
fluctuations of the system and can be used as adequate reac-
tion coordinates.

C. Conformational Markov network

In order to characterize the thermodynamical and ki-
netic properties of our system we build a Markov Model***
by discretizing the state space of our molecule into a set
S ={1, 2,..., M} of M conformational states defining the
Conformational Markov Network of the system.*®%” For our
system, the conformational space is defined as the first three
PCs, reducing greatly its dimensionality but keeping its es-
sential features. With these three coordinates we maintain the
75% of the system fluctuations, while the remaining ones ac-
count for symmetric thermal fluctuations. Each of the coordi-
nates is discretized into 30 bins of equal volume, thus M =
27000.

The Conformational Markov Network is built from the
dynamical trajectories, by counting the occupation of each of
the states 77; and calculating the transition matrix 7;; which
measures the probability of going from state i to state j within
time 7, being t the time window or lag time used to analyze
our trajectories (z = 15 ps in our case).

The transition matrix 7 is ergodic and, if the molecule
is in equilibrium, the occupation distribution 7; can be re-
covered as the eigenvector with eigenvalue 1. In such situa-
tion, detail balance condition holds, =, T;; = 7;T};, and 7 is
the Boltzmann distribution.

D. Basins of attraction network

As the Conformational Markov Network is typically
made up of thousands of nodes and links, hardly any relevant
physical information can be directly obtained. A clustering or
coarse-graining process is usually followed in order to group
together nodes with similar physical features leading to an
smaller, more meaningful network.

Here we apply the Stochastic Steepest Descent algo-
rithm*’ (see Appendix B 2 for detailed algorithm). The ad-
vantage of this algorithm is that the network is systematically
split into its basins of attraction, i.e., groups of nodes whose
probability flux converges into a single node (minimum). The
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coarse-graining process does not rely in any arbitrary defini-
tion, but on the kinetic properties of the system. Physically,
while each node would represent microstates of the system,
the basins of attraction represent macrostates.

Onto this network we calculate a new transition ma-
trix 7; and the occupation probability of each basins 7.
Free energy differences from basin i and j are given by AF;
= —kgTlog,/7;. The mean escape time from basin i is de-
fined as (t,) = t/(1 — T;), where t is the time window used
to sample the configurations, while transition times between
basins i and j are defined as 7, _, ; = ©/T};.

E. Transition-path theory

The Markov Network defined above contains all thermo-
dynamic and kinetic information of the system. Nevertheless,
we are interested in computing the transition pathways be-
tween the set of native conformations to the fully stretched
conformation. Transition-path theory provides the necessary
tools for doing this.**>° We define A as the subset of basins
which represent the native conformation while B is the sub-
set of stretched basins. Our question is which is the typical
sequence of intermediate [ states to go from A to B.

The committor probability ¢;" is defined as the probabil-
ity, when starting at state i, to reach set B next rather than
A. In our case, this is the unfolding probability. By definition
qf =0ifi€eAand q;r = 1if i € B. Mathematically, the com-
mittor probability can be computed by solving the following
system of linear equations:

—g7 + ) That ==Y Ty 3)

kel keB

For a molecule in equilibrium, the backward-committor prob-
ability g; is simply ¢, =1 — q;“.

The transition matrix 7}; contains information from every
possible trajectory which appears in the equilibrium ensemble
of the molecule. In order to extract the contributions from the
unfolding trajectories A — B, we calculate the effective flux
J; defined as the probability flux from i — j contributing to
the A — B transition:

fi =ma; T4 - “)

If we want to calculate the unfolding flux, removing recross-
ings which might appear in a A — B transition, we need to
define the net flux as

i;r =max[0, f;; — f;;], o

fl;r defines a network of fluxes that go from A to B. The total
unfolding flux F represents the expected number of A — B
transitions per time window t and is defined as

F=) > mTq} ©)

i€A j¢A
In order to decompose this flux network onto individual path-
ways P,, different approaches can be applied.’:3! Here we
base our strategy on the bottleneck algorithm, where given

an individual pathway, the bottleneck (rate limiting step) is
identified as the minimal net flux of the path f; and subtracted
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from every remaining net flux fl;’ The process is iterated un-
til the network is fully decomposed into a set of individual
pathways P;.

IV. RESULTS

In order to elucidate the unfolding mechanism under the
effect of mechanical force for our model protein, we have per-
formed six long equilibrium simulations. Every simulation
starts from the native configuration, is equilibrated for 3 us
and then runs up to 3 ms.

A. One dimensional description: The potential
of mean force

Figure 1 shows the PMF calculated along the end-to-end
distance & and the fraction of native contacts Q of our model
protein. The profile for & shows four clear minima that can
be identified with four different configurations, considering
that each of the § strands has a length of £ ~ 3 nm. In the
native configuration (N) £ ~ 0 nm, as the extremal 8 strands
are oriented in the same direction. In the aligned configura-
tion (Al) the second strand (LB), is bent so that the extremes
are aligned in the pulling direction and & ~ 3 nm. The half-
stretched configuration (HS) appears as an stable minima at
& ~ 6 nm, as the fourth (LB)s strand is unfolded. The fully
stretched configuration (S), with & ~ 12 nm, shows the pro-
tein totally unfolded, as an stretched polymer.

These states can also be identified in the Q profile. State
S has all contacts broken Q ~ 0, while Al and HS maintain
around half of the contacts (Q ~ 0.5). The N configuration
shows a minimum at Q ~ 0.75, as thermal fluctuations break
on average some of the contacts.

Remarkably, for this value of the force, the HS configu-
ration correspond to the lowest minimum in both free energy
profiles, and thus is the most stable configuration. Its posi-
tion in the PMF suggests that it also has a relevant role in the
stretching pathways, appearing as a clear mechanical interme-
diate between the native and fully stretched configuration. In
addition, it is necessary to jump over a barrier of several kT
to reach state S while the other states are separated by low
barrier. This suggest a fast dynamics between N and HS and
longer time scales to visit state S.

B. One-dimensional description: ¢ versus
time trajectories

In order to complete the one-dimensional vision of the
unfolding mechanism, it is useful to look directly on individ-
ual trajectories, as it is usually done in single-molecule stud-
ies. Figure 2 shows a large snapshot of a simulation repre-
senting £(f) over 12 us and includes two complete unfold-
ing transitions. For this value of the force, the protein transits
mainly between the N (§ ~ 1 nm) and HS configurations (&
~ 6.5 nm), with some periods dwelling in the A/ configura-
tion (§ ~ 3 nm). The unfolding transition appears as a rare
event. The highlighted windows depict two examples of un-
folding transitions, which contradict the conclusions derived
from the PMF. We can see how both unfolding processes seem
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FIG. 2. Time evolution of coordinate & over 12 us. The snapshot includes
several transitions between N and HS and two complete unfolding-refolding
transitions.

to follow different pathways, so a one-dimensional landscape
is incomplete.

The first transition shows a clear intermediate at
& ~ 6.5 nm, while the second one has at least three inter-
mediates of different life times, with at least one with large
& that cannot be identified from Fig. 1. The exact nature of
the intermediates is hard to tell from the one-dimensional tra-
jectories, although the one at 6.5 nm coincides with HS and
the one with 3 nm with Al. This point will be clarified later
on. Nevertheless, this picture suggests that unfolding occurs
through a complex, rough landscape that cannot be simplified
through a one-dimensional profile.

C. Two dimensional description: Principal
component analysis

Before describing the Markov Model of the system, it is
worth to exploit further the information PCA provides. As ex-
plained previously, we build the Markov network by discretiz-
ing the first three PCs, which define our conformational space,
with lower dimensionality, but still capturing the main aspects
of the system dynamics.

Figure 3 shows the free-energy landscape along the first
two principal components AF/k,T = —log P(q,, q,). Its basic
features agree with the one dimensional landscapes shown in
Sec. IV B, as three major wells are found. Nevertheless, we
see also clear differences, being the PCs able to capture better
the details of the free-energy landscape. Each of these major
wells have a rough structure, showing a set of minor wells sep-
arated by small energy barriers ~2k,T, revealing thus a richer
variety of configurations. Moreover, two new low populated
wells appear between the folded structures (native and half-
stretched) and the fully-stretched configurations. These new
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FIG. 3. Free-energy landscape along the first two PCs.

states could suggest the existence of different unfolding path-
ways, where the half-stretched configuration does not neces-
sarily plays the role of mechanical intermediate.

D. Equilibrium ensemble of the model protein: The
basin network

The built microstate network is made up of 1876 nodes
related kinetically through 23995 links. After applying the
Stochastic Steepest Descent algorithm,*’ the network is clus-
tered into 30 basins connected through 1290 links. In order to
obtain a good description of the system, we keep only those
basins which were visited at least 0.001% of the trajectory
(m; > 107°), avoiding pathological or extremely rare states.
After this refinements, we keep 13 macrostates, connected
through 65 edges, including auto-links.

Figure 4 (upper) shows a graphical representation of the
basin network, where the size of each bead (node) is propor-
tional to its occupation ;. The spatial arrangement of the
nodes was calculated applying the Force Atlas algorithm,>
where an artificial dynamics is simulated. This dynamics is
based in considering each link as a linear spring and includ-
ing a certain repulsion between nodes, until an equilibrium
configuration is obtained. The nodes are colored according
to the modularity class they belong to,’® having five different
classes. Lower panel of Fig. 4 shows a representative structure
of each basin (macrostate), including the label which identi-
fies them.

Configurations N, and N, correspond to native-like states
and will define the native set A due to its structural similarity
and high Q value. The aligned configuration A/, already iden-
tified in Fig. 1, appears close to N, and N, in Fig. 4 but does
not belong to the native set since it gives very different Q and
& values. Basin HS is the Half-Stretched Configuration, the
most stable macrostate under these conditions. State S is the
Fully-Stretched Configuration, while the remaining 8 basins
are labelled as intermediate states and will be discussed fur-
ther on.

Table I shows information about each of the identified
macrostates. 77; is the occupation of basin i, (f;) the mean
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FIG. 4. Basins of attraction Markov Network (upper). We represent the 13
basins with 7 > 107 where the size of the bead is proportional to 7 ;~ The
bidirectional arrows connecting nodes represent allowed transitions (the mag-
nitude of 7. is not shown). Each basin is labelled according to the configura-
tion they encode. Representative structure associated to each basin (lower).

TABLE I. Description of the basins of attraction.

# m; (t) (ps)  (Q) (&) (am)  fuy 4

N, 0.5 559 075 0.8 0.13 00

N, 014 495 0.73 0.9 030 00

Al 0.14 272 040 2.6 0.60 1.4 x107*
HS 044 2982 0.46 6.5 0.18 92x107*
I, 007 362 025 4.8 0.66 12x1073
L, 001 2586 0.35 6.8 040  0.12

I, 6.67x107° 120 012 9.0 023 029

I, 13x107* 198 0.11 10.1 054 034

I, 19x%107° 64 0.10 9.6 0.60 0.1

Iy, 39x107* 163 0.14 855 030 053

I, 33x107* 176 0.13 935 050 058

Iy 25%x107° 56 009 105 0.70  0.71

s 006 75000 001 137 0.00 1
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escape time (defined above), (Q) the mean fraction of native
contacts and (£) the mean end-to-end distance, both calcu-
lated from the marginal distributions of such magnitudes on
each basin. It is remarkable that in many cases such distribu-
tions are not unimodal, so the actual meaning of the average
must be taken with care. q;r are the committor probabilities
from the native (N, and N,) to the stretched (S) configura-
tion this is: the unfolding probability of basin i. We show also
an additional magnitude f,, the fraction of non-native con-
tacts. The model we use allows non-native interactions which
can stabilize configurations which would not form in Go6-like
models.

It is important to stress the difference between the two
native basins N, and N,, as they have very different con-
nectivity features in the network, belonging to different
modularity classes. Configuration N, is closer to the native
structure, given the arrangement of the neutral turns, while N,
shows larger fluctuations, leading to a loss of some native con-
tacts, and the formation of non-native ones. Interestingly, N,
is more connected to the Intermediate States than N,, which
shows fast transition times to HS, TN, HS = 557 ps, while
N~ HS = 13.5 x 10° ps. In fact, they are both scarcely con-
nected, Ty y =14 x10° ps and 7y _y =15 x 10° ps,
reason why they belong to a different modularity class. In
this regard, in spite its structural similarity which overlap both
states in the PMF description, their actual role in the configu-
rational space is quite different.

In this sense, the first contradictions with the conclusions
yielded by the PMF description appear here. While both de-
scriptions agree coarsely in the main features of the equi-
librium ensemble of the system, revealing three major states
(native, half-stretched, and fully-stretched), the role of such
states and the presence of other relevant configurations is
hidden in the one-dimensional projection. N; and N, states
are integrated into the same high Q or low & minimum, will
the intermediate low-populated states which connect to the
stretched state are impossible to be identified in the one-
dimensional representation.

E. The unfolding pathways: Transition path theory

In order to decipher the actual unfolding mechanism of
our model protein under the effect of a mechanical force, we
apply transition-path theory to the basin network, as explained
in Sec. II1.

We define the native set A as basins N, and N,, while the
stretched set B is just made up of basin S. According to this
definitions, we calculate the committor probabilities, shown
in Table I. Figure 5 shows the net flux network, being the
thickness of the arrows proportional to the net flux J The

total unfolding flux is F = 2.9 x 1077 ps~!, meaning that we
observe an unfolding transition every 3.5 us, approximately.

We decompose the net flux network by identifying first
the strongest pathway, remove it from the network and re-
peat the process until there is no path from set A to set B.
Due to the size of our network, this process can be done man-
ually, although computational applications can be used.’*3!
We identify a total of 9 different paths leading from A to B. Af-
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Native (A)

Stretched (B)

FIG. 5. Folding flux for the model protein. The network depicts the 85%
most relevant unfolding pathways for the 46-mer BLN model protein Each of
the 13 configuration identified with the Stochastic Steepest Descent algorithm
are shown here, together with the label which identifies them. The configu-
rations are arranged vertically according to their committor probability (not
in scale). The arrows connecting configurations represent the unfolding net
flux fl;r with their thickness is proportional to the magnitude of the flux. The

numbers next to the arrows give the flux magnitude in 10~ ps~!.

ter decomposing the network into these 9 paths, unconnected
regions still remain due to the presence of trap states* that
carry around 20% of the flux. Figure 6 shows the 6 more rel-
evant paths, which carry 89% of the unfolding flux.

From the 9 pathways, 7 start from conformation N; while
just 2 from N,. This is a remarkable fact, being N, closer
to the native structure than N,, as discussed in Sec. IV D.
In addition, states /; and I, appear as the actual interme-
diates for the unfolding mechanism: A — B is forbidden
in case these two states are removed from the net flux
network. Out of the 9 pathways, 6 of them pass through
state I, and 3 through state /,.

The construction of the Markov Model from the PCs and
the use of transition-path Theory help us to unveil the actual
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FIG. 6. Model protein unfolding pathways. The six pathways carrying most
of the total flux (up to 89%) are explicitly shown.

unfolding mechanism and its driving process. First of all, be-
ing HS a notably relevant metastable state (P, = 0.44), its role
in the unfolding mechanism is completely marginal, as it just
appears in path P, with a low weight (7%). Configuration HS
is mainly involved in the fast transitions to the native ensem-
ble, which actually occupy the largest fraction of the trajec-
tory, as seen in Fig. 2. In HS strand B, is detached, aligning
the terminal strands in the direction of the force while keeping
the hydrophobic core formed by 8, and 8, interaction.

Configuration I, and HS have similar £ values (see
Table I), as B, strand is unfolded. Due to this, both states
overlap in the one dimensional description, although 7, low
population (P, = 0.01) makes its contribution negligible, and
thus hard to be directly identified. Nevertheless, its role is re-
markably different as I, plays a central role in the unfolding
process, since the loss of the hydrophobic core destabilizes
this structure, driving the unfolding mechanism.

The other major folding route includes /; as the interme-
diate. This configuration might look similar to HS as it also
has B, strand unfolded. However, the core adopts a compact,
globular structure that is sustained by a large number of non-
native interactions (nearly the 70% of the contacts) between
the hydrophobic residues in strands 8, and 8,. This state is
also likely lost in the one-dimensional profile. This configura-
tion drives then the unfolding through states I, and I, which
are also stabilized through a large proportion of non-native
contacts (see Table I).
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The possibility of forming non-native contacts is respon-
sible also of structure A/, with relevant stability (P, = 0.14),
and a 60% of non-native interactions. This structure plays a
certain role in the unfolding pathways (as it allows to reach
I, from native state N,), but also participates in the fast dy-
namics between HS and the native set, as can be seen in
Fig. 2.

V. CONCLUSIONS AND DISCUSSION

In this paper we have presented the detailed analysis of
the unfolding process of a model protein under the presence of
a mechanical pulling force. This scenario mimics force clamp
single molecule experiments, where proteins or nucleic acids
are subject to a constant external force that drives their un-
folding. Due to the limitation of available observables, these
experiments are often analyzed by reconstructing their free-
energy landscape along the pulling direction through differ-
ent existing techniques.® '>-18:33:54 This approach is often fol-
lowed in many computational studies by using different reac-
tion coordinates.'*~>*

In this sense we wanted to reproduce a similar protocol
and explore the conclusions yielded by a one-dimensional
analysis and a multidimensional Markov model approach.
The simplicity of our model protein, and the fact that the
force sets a privileged direction invites to a one-dimensional
characterization. Nonetheless, we have seen how both ap-
proaches lead to contradictory conclusions. The PMF descrip-
tion shows the existence of three major states, the native, the
stretched or denatured and a metastable half-stretched con-
figuration, which seems to play the role of mechanical in-
termediate in the unfolding process. A close look to a one-
dimensional trajectory casts doubt on this conclusion, reveal-
ing a rough landscape, where different unfolding pathways
seem to be possible. Nevertheless, this simple approach is
not able by itself to provide a detailed vision of the unfold-
ing mechanism, as the one provided by the method applied
here.

A more detailed multidimensional study changes dramat-
ically the unfolding picture. Being the most populate one, HS
state plays a marginal role in the unfolding pathway, with just
7% of the unfolding flux passing through it. The true mechan-
ical intermediates are states /; and I,, building the two major
unfolding routes, both related to the loss of the hydrophobic
core that destabilizes the structure and drives the unfolding
process. Due to their low population, both states are lost in the
projection onto a single coordinate. The two one-dimensional
pathways shown in Fig. 2 are now clear, as the state at & ~
6.5nm would actually correspond to /,, and the multi-pathway
scenario is systematically revealed with all the intermediates.
Interestingly, the configuration space of our system stresses
the importance of non-native interactions, as states like Al or
I, have low values of Q, while a large fraction of non-native
contacts, so they would not have been identified with a Go
version of the model.

In this regard, due to the existence of multiple path-
ways, independently of the chosen reaction coordinate, a
one-dimensional picture would never be enough to charac-
terize the unfolding pathway of this system. Thus, our work
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differs from those which put attention on the proper choice
of the reaction coordinate.!”-!® The necessity of multidimen-
sional descriptions indeed has been warned in the last years
to understand thermal unfolding, where the protein tran-
sits from a low-entropy state (native) to a high-entropy one
(denatured).”*>? Also, recent works on mechanically pulled
proteins, warn about the possibility of various unfolding path-
ways or the existence of multiple mechanical intermediates,
which can be worked out by a combination of experiments
and computer simulations, and the use of engineered proteins
to force the unfolding route through a modified free-energy
landscape.>*-3? Nevertheless, the one-dimensional picture, is
still vastly assumed in mechanical unfolding processes, both
in experimental and computational applications.

Regarding our analysis Markov Model protocol, we
stress two major differences when compared to most works
of this community. First, it is important to note that we are ac-
tually using the PCs as reaction coordinates in order to reduce
the system dimensionality. Nevertheless, these coordinates
has been proven to capture successfully the most relevant dy-
namical events of complex systems such as biomolecules. In
our case, three coordinates are enough, as the remaining ones
account merely for gaussian thermal fluctuations. Second, we
stress on the importance of the coarse-graining mechanism
applied to the original Conformational Markov Network,*’
which is able to systematically cluster the network based only
on the kinetic properties of the system.

Although extremely simple molecular assays such as
DNA or RNA hairpins could fit into a single reaction co-
ordinate description,® increasing slightly the complexity of
the molecule leads to a dramatical rise in the complexity
of the actual free energy landscape in the system, requiring
more detailed studies. In this sense, molecules such as mul-
tiple nucleic-acid hairpins,’’ protein-ligand complexes®® or
any mechanically pulled protein,® appear as potential sys-
tems where a one-dimensional description takes the risk of
leading to a clear misunderstanding of the actual complexity
of their conformational space and the dynamical processes to
which they are subject.
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APPENDIX A: MODEL PARAMETERS
AND SIMULATION PROTOCOL

We simulate our system using the following adimen-
sional parameters in Eq. (1),:

* Vi:K=50,r,=1.

* V,;A=5.118,B=5.308, V, = —5.295.

® V;: C;=0and D; = 0.2 if two or more aminoacids are
neutral, and C; = D; = 1.2 otherwise.

® V,: there are three different cases, according to the

character of the aminoacids.
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1. ¢;=0and€; =4ifior;are neutral.
2. ¢;=1ande; =4if i and j are hydrophobic.

3. ¢;=-1 and € = 8/3 in the remaining cases.

All simulations were carried out using self-built code, inte-
grating the overdamped Langevin equations described above
with an stochastic second order Runge-Kutta algorithm.®
Physical units can be easily recovered in the following
way. Length unit is defined by the C, — C, distance r,
= 0.38 nm. Energy units are defined as the energy of a hy-
drogen bond €, &~ 1.7k,T, being force units F ~ 17.3 pN.
Mass unit is that of an average aminoacid m, ~ 3 x 107%* kg.

In this sense our time units 7 = ,/m,r3 /e, ~ 3 ps, and the

damping is that of water y ~ 10%.

Six trajectories at F' = 0.8F, were simulated (with F,
~ 20 pN), were monomer 1 was kept fixed while force was
exerted to monomer N through a linear spring. Each simula-
tion covered a total time of 3 ms, with a previous thermaliza-
tion process of 3 us. The integration step is dr = 0.0057 and
the time window to sample the trajectories T = 57.

APPENDIX B: ANALYSIS METHODS
1. Conformational Markov network

The Conformational Markov Network (CMN)*%47 ap-
pears as a useful coarse-grained representation of large
stochastic trajectories. This picture is obtained by discretizing
the conformational space explored by the system and consid-
ering the dynamical jumps between the discretized configu-
rations along the simulation. In this sense, the nodes of the
complex network are defined by the discretized states, while
the links account for the observed transitions between them.
The arising network is thus a weighted and directed graph.

In our case, the conformational space is defined by the
three first principal components, in order to reduce the num-
ber of degrees of freedom, keeping indeed the essential fea-
tures of our system. We divide each of the principal compo-
nent into 30 cells of equal volume. Our discretized conforma-
tional space is thus made up of 30° possible states, which may
be or not occupied within the stochastic trajectory. We assign
each node a weight 7; accounting for the fraction of trajec-
tory that the system has visited within the trajectory. The nor-
malization condition ) ;7; = 1 holds. Second, the value T; is
assigned to each directional link accounting for the dynamical
jumps from node j to i. Self-loops can exist, and thus 7; # 0.
Finally, the normalization condition ) ,7;; = 1 is forced. Ac-
cording to this, the CMN is totally defined by the occupancy
vector IT = P, and the transition matrix T = {T};}. The ma-

trix 7 is the transition probability of the Markov chain defined
by

[(r + Ar) = TTI(r), (B1)
where I1(7) it the probability distribution at time ¢. If the tra-
jectory is long enough, T is ergodic and time invariant, vector

IT coincides with the stationary distribution associated with
the Markov chain IT = T'I1. Moreover, the detailed balance
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condition must hold

T,m, =T, (B2)

2. Stochastic steepest descent

Once we have translated the molecular dynamics trajec-
tories onto a CMN, we apply the stochastic steepest descent
(SSD) algorithm*’ in order to split it into its basins of at-
traction in an efficient way, obtaining in turn useful thermo-
statistical information about the system. The SSD algorithm is
inspired in the deterministic steepest descent algorithm used
to find minima in a multidimensional surface. We define the
assisting vector U = {u;}, where i labels the nodes. The steps
of the SSD algorithm are as follows:

1. We start with U = 0.

2. Select randomly a node [ with 1, = 0 and write an auxil-
iary list of nodes adding [ as first entry.

3. Select within the neighbors of [ the node m that
follows the maximum probability flux, this is 7,
= max {7}1’ Vi ;}. Check which of the following condi-
tions is fulfilled:

( It7,, > T, and u,, = 0, add m to the list and go
back to 3, using m instead of /.

(b) If T, > T, and u,, # O write the labels of all the
nodes in the list as u; = u,,. Go back to step 3.

(c) If T, < T, remove link [ — m from the graph. Re-
turn to point 3.

This process ends when every node in the CMN has been
labelled, this is u; # 0Vi. Then, the whole conformational
space has been characterized and every node is connected
with its local minima in the FEL. All nodes with the same
label belong to the same basin in this FEL and therefore we
can associate them with the same conformational state.

Given the basin partition, a new CMN network can be
built, taken the basins themselves as new nodes. The occu-
pation probabilities will now be defined as w, = ), ,7;,
while the new transition matrix 7" is built, with elements Tﬁa
=D icadjeplimid i c o7 ;- From these definitions, transi-
tion times can be easily calculated as 7,5 = 7/T},,, being 7 the
time window used for the network construction. The relative
free energy of basin @ with respect to basin 8 is simply AF,
= —kgTlog (7 , /7 p).

APPENDIX C: THERMAL AND MECHANICAL
CHARACTERIZATION

We start by characterizing the protein from a thermal and
mechanical point of view, in order to know the suitable range
of force and temperature to work with. Although more de-
tailed characterizations have been made in previous works*?
we focus on the thermodynamical transition at T, reflected
on a peak in the heat capacity, as it can be seen in Fig. 7. The
heat capacity is calculated as C, = (kz 1)~ *[(E?) — (E)?], with
E the total internal energy. We work at 7= 0.55T,, below the
transition, but with allowing enough fluctuation for the system
to explore its configurational space.
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600 — — :
« o
500 + ° : . J
400 : 1
—_— o |
- -
©, 300 : . 1
o d I o
200 | . | . |
100-"'.. : e ]
0,0 0,5 1.0 1,5 2,0
T/TC
15 — : T . . r : :
0,8
0,7
10 0.5
0,5
£ 04 o
o5 0,3
0,2
0,1
0 1 1 L 1 010
0,25 0,50 0,75 1,00 1,25
FIF,

FIG. 7. Thermal and mechanical characterization of the model protein. At T,
it exhibits a thermodynamical unfolding transition, reflected in a peak on the
heat capacity (in arbitrary units). Force also induces an unfolding transition
at Iy, leading to the fully stretched conformation.

When applying force to the protein, it exhibits also a
transition at F';,, where the protein unfolds mechanically to
the fully stretched configuration. At this force, the end-to-end
distance £ increases abruptly, while the fraction of native con-
tacts Q drops to 0. Around F = 0.75F; a first change of be-
havior can be seen, due to the population of the half-stretched
configuration, which leads to a drop to Q ~ 0.5 and £ ~ 7 nm.
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