The Astrophysics Division of CEA Saclay has a long history in the development
of CdTe based pixelated detection planes for X and gamma-ray astronomy, with
time-resolved imaging and spectrometric capabilities. The last generation,
named Caliste HD, is an all-in-one modular instrument that fulfills
requirements for space applications. Its full-custom front-end electronics is
designed to work over a large energy range from 2 keV to 1 MeV with excellent
spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM
and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project,
a consortium based on research laboratories and industrials has been settled in
order to develop a new generation of gamma camera. The aim is to develop a
system based on the Caliste architecture for post-accidental interventions or
homeland security, but integrating new properties (advanced spectrometry,
hybrid working mode) and suitable for industry. A first prototype was designed
and tested to acquire feedback for further developments. In this study, we
particularly focused on spectrometric performances with high energies and high
fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba,
137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV,
2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after
150 keV, as Compton effect becomes dominant. However, CALISTE is also designed
to handle multiple events, enabling Compton scattering reconstruction, which
can drastically improve detection efficiencies and dynamic range for higher
energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In
particular, such spectrometric performances obtained with 152Eu and 60Co were
never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment. Available
online 9 January 2015, ISSN 0168-9002
(http://www.sciencedirect.com/science/article/pii/S0168900215000133).
Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics
Instrumentation; Nuclear Instrumentation; Gamma-ray camera