46 research outputs found

    Towards common European health policies: what are the implications for the Nordic countries?

    Get PDF
    Health care is an area that remains formally outside the competence of the EU. Despite this, the union’s influence on national health care policies has increased substantially over the past decade. In a series of rulings, the European Court of Justice (ECJ) established a de facto system of patient rights, which, under certain conditions, entitle European citizens to receive health care in other member states at the expense of the social insurance system of their home country. This undermines the autonomy of the member states in the area of health, a key sector in national welfare systems. In 2008, the Commission proposed a new directive on patients’ rights which builds directly on the ECJ rulings, thus consolidating politically the legal precedent set by the Court. The ECJ Court rulings have also spurred the initiation of a so-called OMC process in the area of health care, whereby the member states commit themselves to policy harmonization on a voluntary basis. In this paper, we review the contents of emerging EU policies in the area of health and discuss their implications for the Nordic health care systems. A central question is whether any coherent, common European policy may be discerned and, if so, how it will affect health care systems of the Nordic type, which are tax-based and universalistic in orientation?European Union; Health care; European Court of Justice; Open Method of Coordination

    In situ hydrogen loading on zirconium powder

    Get PDF
    For the first time, various hydride phases in a zirconium-hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr-H phase diagram are obtained from a single experimental arrangement

    CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    Get PDF
    Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8(+) Trm cells on a compartmental and functional basis. In human skin epithelia, CD8(+)CD49a(+) Trm cells produced interferon-γ, whereas CD8(+)CD49a(−) Trm cells produced interleukin-17 (IL-17). In addition, CD8(+)CD49a(+) Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8(+)CD49a(+) Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8(+)CD49a(–) Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8(+) Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases

    The atomic simulation environment — a python library for working with atoms

    Get PDF
    The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simula- tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple "for-loop" construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations

    A Longitudinal Comparison of Arm Morbidity in Stage I–II Breast Cancer Patients Treated with Sentinel Lymph Node Biopsy, Sentinel Lymph Node Biopsy Followed by Completion Lymph Node Dissection, or Axillary Lymph Node Dissection

    Get PDF
    Background:\ud Long-term shoulder and arm function following sentinel lymph node biopsy (SLNB) may surpass that following complete axillary lymph node dissection (CLND) or axillary lymph node dissection (ALND). We objectively examined the morbidity and compared outcomes after SLNB, SLNB + CLND, and ALND in stage I/II breast cancer patients.\ud \ud Materials and Methods:\ud Breast cancer patients who had SLNB (n = 51), SLNB + CLND (n = 55), and ALND (n = 65) were physically examined 1 day before surgery (T0), and after 6 (T1), 26 (T2), 52 (T3), and 104 (T4) weeks. Differences in 8 parameters between the affected and unaffected arms were calculated. General linear models were computed to examine time, group, and interaction effects.\ud \ud Results:\ud All outcomes changed significantly, mostly nonlinearly, over time (T0–T4). Between T1 and T4, limitations decreased in abduction (all groups); anteflexion, abduction-exorotation, abduction strength (SLNB + CLND, ALND); flexion strength (SLNB + CLND); and arm volume (SLNB, SLNB + CLND). At T4, limitations in anteflexion (SLNB, ALND), abduction (SLNB + CLND, ALND), exorotation (ALND), abduction-exorotation (all groups), and volume (SLNB + CLND, ALND) increased significantly compared with T0. The SLNB group showed an advantage in anteflexion, abduction, abduction-exorotation, and volume. Groups changed significantly but differently over time in anteflexion, abduction, abduction/exorotation, abduction strength, flexion strength, and volume. Effect sizes varied from 0.19 to 0.00.\ud \ud Conclusion:\ud Initial declines in range of motion and strength were followed by recovery, although not always to presurgery levels. Range of motion and volume outcomes were better for SLNB than ALND, but not strength. SLNB surpassed SLNB + CLND in 2 of the range of motion variables. The clinical relevance of these results is negligible

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959\,nm at R∼5000, or two shorter ranges at R∼20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator
    corecore