23 research outputs found
African Trypanosomes undermine humoral responses and vaccine development : link with inflammatory responses?
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination
Genetic Engineering of Trypanosoma (Dutonella) vivax and In Vitro Differentiation under Axenic Conditions
Trypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T. b. brucei, T. congolense and T. vivax. These pioneer studies rapidly led to the successful genetic manipulation of T. b. brucei and T. congolense. Advances were made in the understanding of these parasites' biology and virulence, and new drug targets were identified. By contrast, challenging in vitro conditions have been developed for T. vivax in the past, and this per se has contributed to defer both its genetic manipulation and subsequent gene function studies. Here we report on the optimization of non-infective T. vivax epimastigote axenic cultures and on the process of parasite in vitro differentiation into metacyclic infective forms. We have also constructed the first T. vivax specific expression vector that drives constitutive expression of the luciferase reporter gene. This vector was then used to establish and optimize epimastigote transfection. We then developed highly reproducible conditions that can be used to obtain and select stably transfected mutants that continue metacyclogenesis and are infectious in immunocompetent rodents
Development of a Quantitative Bead Capture Assay for Soluble IL-7 Receptor Alpha in Human Plasma
IL-7 is an essential cytokine in T-cell development and homeostasis. It binds to the IL-7R receptor, a complex of the IL-7Rα (CD127) and common γ (CD132) chains. There is significant interest in evaluating the expression of CD127 on human T-cells as it often decreased in medical conditions leading to lymphopenia. Previous reports showed the usefulness of CD127 as a prognostic marker in viral infections such as HIV, CMV, EBV and HCV. A soluble CD127 (sCD127) is released in plasma and may contribute to disease pathogenesis through its control on IL-7 activities. Measuring sCD127 is important to define its role and may complement existing markers used in lymphopenic disease management. We describe a new quantitative assay for the measurement of sCD127 in plasma and report sCD127 concentrations in healthy adults.We developed a quantitative bead-based sCD127 capture assay. Polyclonal CD127-specific antibodies were chosen for capture and a biotinylated monoclonal anti-CD127 antibody was selected for detection. The assay can detect native sCD127 and recombinant sCD127 which served as the calibrator. The analytical performance of the assay was characterized and the concentration and stability of plasma sCD127 in healthy adults was determined. The assay's range was 3.2–1000 ng/mL. The concentration of plasma sCD127 was 164±104 ng/mL with over a log variation between subjects. Individual sCD127 concentrations remained stable when measured serially during a period of up to one year.This is the first report on the quantification of plasma sCD127 in a population of healthy adults. Soluble CD127 plasma concentrations remained stable over time in a given individual and sCD127 immunoreactivity was resistant to repeated freeze-thaw cycles. This quantitative sCD127 assay is a valuable tool for defining the potential role of sCD127 in lymphopenic diseases
Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions
Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis
Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. I. Parasitological, Hematological and Pathological Parameters
African trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T. vivax has been more than neglected despite an urgent need to develop efficient control strategies. Some pioneering rodent models were developed to circumvent the difficulties of working with livestock, but disappointedly were for the most part discontinued decades ago. To gain more insight into the biology of T. vivax, its interactions with the host and consequently its pathogenesis, we have developed a number of reproducible murine models using a parasite isolate that is infectious for rodents. Firstly, we analyzed the parasitical characteristics of the infection using inbred and outbred mouse strains to compare the impact of host genetic background on the infection and on survival rates. Hematological studies showed that the infection gave rise to severe anemia, and histopathological investigations in various organs showed multifocal inflammatory infiltrates associated with extramedullary hematopoiesis in the liver, and cerebral edema. The models developed are consistent with field observations and pave the way for subsequent in-depth studies into the pathogenesis of T. vivax - trypanosomosis
Histopathological study of mice infected with <i>Trypanosoma vivax</i>.
<p>8-week-old Outbred mice were injected i.p. with 10<sup>2</sup> bloodstream forms of <i>T. vivax</i> and different lymphoid and non lymphoid organs were harvested for histopathological examination 20 days post-infection. Spleen (A–D): (A) Diffuse lesions characterized by large necrotic foci in the red pulp (black star), associated with lymphoid tissue disorganization in the white pulp (white star). (B) Infiltration of a necrotic focus by activated macrophages (top of the Fig., arrows) and trypanosomes (arrowhead shows very small basophilic points in the inset depicting a higher magnification). (C) Presence of lower density hematopoiesis compared to non-infected mice. (D) Infiltration of the white pulp by activated macrophages and presence of a Mott cell (arrow). Liver (E–G): (E) Multifocal inflammatory lesions centered on portal tracts/centrilobular veins (arrows), and focal necrotic focus (star). (F) Peri-venous inflammatory infiltrate composed of plasma cells (mostly), but also lymphocytes and macrophages. In the inset depicting a higher magnification, arrowhead points to trypanosomes in the vascular spaces. (G) Foci of extramedullary hematopoiesis. Kidney (H–J): (H) Interstitial inflammatory infiltrates (I) mostly composed of plasma cells. (J) Trypanosomes in an arcuate artery (star); in the inset depicting a higher magnification, arrowhead points to trypanosomes in the vascular spaces. Cerebellum (K–M): (K) Multifocal lesions centered on blood vessels (arrows). (L) Blood vessel lumen filled by trypanosomes, proteins and erythrocytes (star), with perivascular edema (arrow) and ischemic neurons (arrowheads). (M) Trypanosomes in a meningeal blood vessel. Hematoxylin-eosin staining, scale bars are indicated at the bottom of each photograph. In the inset depicting a higher magnification, the arrowhead points to trypanosomes.</p
Molecular identity of <i>T. vivax</i> IL 1392.
<p>Full lengh of <i>ILDat1.2 VSG</i> gene (A). Initiation and stop codons are underlined. The specific <i>T. vivax</i> 20-amino acids sequence at the N-terminal end of the gene is depicted in red (positions 64 to 123). Forward and reverse primers used in this experiment are in italics. DNA was extracted from <i>T. vivax</i> bloodstream forms and amplified by PCR using <i>VSG-1.2</i>F and <i>VSG-1.2</i>R primers. A fragment of 148 bp was obtained and the resulting sequence aligned with the Y486 reference strain (B). Two point mutations are squared. Blood smears of a mouse infected with <i>T. vivax</i> were fixed and stained with Giemsa (C and D); k = kinetoplast, f = flagellum. The high number of circulating parasites at the peak of parasitemia can be evaluated in the picture (E).</p