10 research outputs found
Heritability of working memory brain activation
Although key to understanding individual variation in task-related brain activation, the genetic contribution to these individual differences remains largely unknown. Here we report voxel-by-voxel genetic model fitting in a large sample of 319 healthy, young adult, human identical and fraternal twins (mean ± SD age, 23.6 ± 1.8 years) who performed an n-back working memory task during functional magnetic resonance imaging (fMRI) at a high magnetic field (4 tesla). Patterns of task-related brain response (BOLD signal difference of 2-back minus 0-back) were significantly heritable, with the highest estimates (40–65%) in the inferior, middle, and superior frontal gyri, left supplementary motor area, precentral and postcentral gyri, middle cingulate cortex, superior medial gyrus, angular gyrus, superior parietal lobule, including precuneus, and superior occipital gyri. Furthermore, high test-retest reliability for a subsample of 40 twins indicates that nongenetic variance in the fMRI brain response is largely due to unique environmental influences rather than measurement error. Individual variations in activation of the working memory network are therefore significantly influenced by genetic factors. By establishing the heritability of cognitive brain function in a large sample that affords good statistical power, and using voxel-by-voxel analyses, this study provides the necessary evidence for task-related brain activation to be considered as an endophenotype for psychiatric or neurological disorders, and represents a substantial new contribution to the field of neuroimaging genetics. These genetic brain maps should facilitate discovery of gene variants influencing cognitive brain function through genome-wide association studies, potentially opening up new avenues in the treatment of brain disorders
Modeling of the hemodynamic responses in block design fMRI studies
The hemodynarnic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies
Genes influence the amplitude and timing of brain hemodynamic responses
In functional magnetic resonance imaging (fMRI), the hemodynamic response function (HRF) reflects regulation of regional cerebral blood flow in response to neuronal activation. The HRF varies significantly between individuals. This study investigated the genetic contribution to individual variation in HRF using fMRI data from 125 monozygotic (MZ) and 149 dizygotic (DZ) twin pairs. The resemblance in amplitude, latency, and duration of the HRF in six regions in the frontal and parietal lobes was compared between MZ and DZ twin pairs. Heritability was estimated using an ACE (Additive genetic, Common environmental, and unique Environmental factors) model. The genetic influence on the temporal profile and amplitude of HRF was moderate to strong (24%-51%). The HRF may be used in the genetic analysis of diseases with a cerebrovascular etiology. (C) 2015 Elsevier Inc. All rights reserved
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Genetic Deletion of Fatty Acid Amide Hydrolase Alters Emotional Behavior and Serotonergic Transmission in the Dorsal Raphe, Prefrontal Cortex, and Hippocampus
Pharmacological blockade of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), produces CB1 receptor (CB1R)-mediated analgesic, anxiolytic-like and antidepressant-like effects in murids. Using behavioral and electrophysiological approaches, we have characterized the emotional phenotype and serotonergic (5-HT) activity of mice lacking the FAAH gene in comparison to their wild type counterparts, and their response to a challenge of the CB1R antagonist, rimonabant. FAAH null-mutant (FAAH−/−) mice exhibited reduced immobility in the forced swim and tail suspension tests, predictive of antidepressant activity, which was attenuated by rimonabant. FAAH−/− mice showed an increase in the duration of open arm visits in the elevated plus maze, and a decrease in thigmotaxis and an increase in exploratory rearing displayed in the open field, indicating anxiolytic-like effects that were reversed by rimonabant. Rimonabant also prolonged the initiation of feeding in the novelty-suppressed feeding test. Electrophysiological recordings revealed a marked 34.68% increase in dorsal raphe 5-HT neural firing that was reversed by rimonabant in a subset of neurons exhibiting high firing rates (33.15% mean decrease). The response of the prefrontocortical pyramidal cells to the 5-HT2A/2C agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((±)-DOI) revealed desensitized 5-HT2A/2C receptors, likely linked to the observed anxiolytic-like behaviors. The hippocampal pyramidal response to the 5-HT1A antagonist, WAY-100635, indicates enhanced tonus on the hippocampal 5-HT1A heteroreceptors, a hallmark of antidepressant-like action. Together, these results suggest that FAAH genetic deletion enhances anxiolytic-like and antidepressant-like effects, paralleled by altered 5-HT transmission and postsynaptic 5-HT1A and 5-HT2A/2C receptor function
The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia
Background Cognitive impairment is a clinically important feature of schizophrenia. Polygenic risk score (PRS) methods have demonstrated genetic overlap between schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), educational attainment (EA), and IQ, but very few studies have examined associations between these PRS and cognitive phenotypes within schizophrenia cases. Methods We combined genetic and cognitive data in 3034 schizophrenia cases from 11 samples using the general intelligence factor g as the primary measure of cognition. We used linear regression to examine the association between cognition and PRS for EA, IQ, schizophrenia, BD, and MDD. The results were then meta-analyzed across all samples. A genome-wide association studies (GWAS) of cognition was conducted in schizophrenia cases. Results PRS for both population IQ (P = 4.39 × 10–28) and EA (P = 1.27 × 10–26) were positively correlated with cognition in those with schizophrenia. In contrast, there was no association between cognition in schizophrenia cases and PRS for schizophrenia (P = .39), BD (P = .51), or MDD (P = .49). No individual variant approached genome-wide significance in the GWAS. Conclusions Cognition in schizophrenia cases is more strongly associated with PRS that index cognitive traits in the general population than PRS for neuropsychiatric disorders. This suggests the mechanisms of cognitive variation within schizophrenia are at least partly independent from those that predispose to schizophrenia diagnosis itself. Our findings indicate that this cognitive variation arises at least in part due to genetic factors shared with cognitive performance in populations and is not solely due to illness or treatment-related factors, although our findings are consistent with important contributions from these factors
COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19
The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p