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Abstract 
The hemodynamic response function (HRF) describes the local response of brain 

vasculature to functional activation. Accurate HRF modeling enables the investigation 

of cerebral blood flow regulation and improves our ability to interpret fMRI results. 

Block designs have been used extensively as fMRI paradigms because detection 

power is maximized; however, block designs are not optimal for HRF parameter 

estimation. Here we assessed the utility of block design fMRI data for HRF modeling. 

The trueness (relative deviation), precision (relative uncertainty), and identifiability 

(goodness-of-fit) of different HRF models were examined and test-retest 

reproducibility of HRF parameter estimates for a commonly used block design 

paradigm was assessed using computer simulations and fMRI data from 82 healthy 

young adult twins (mean age 22.5 year old), acquired on two occasions 3-4 months 

apart. The effects of systematically varying attributes of the block design paradigm 

were also examined. In our comparison of five HRF models, the model comprising 

the sum of two gamma functions with six free parameters had greatest parameter 

accuracy and identifiability. HRF height and time-to-peak were highly reproducible 

between studies and width was moderately reproducible but the reproducibility of 

onset time was low. This study established the feasibility and test-retest reliability of 

estimating HRF parameters using data from block design fMRI studies.  
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Introduction 

The hemodynamic response function (HRF) reflects the regulation of regional 

cerebral blood flow in response to neuronal activation. Accurate modeling of the HRF 

is of interest in a number of areas of research.1-5 The HRF plays a key role in the 

analysis of functional magnetic resonance imaging (fMRI) data3 and variation in the 

HRF between individual subjects and between brain regions has prompted the 

estimation of subject-specific HRFs as a means of enhancing the accuracy and power 

of fMRI studies.1 Characteristics of the shape of the evoked hemodynamic response 

such as height, delay, and duration may also be used to infer information about 

intensity, onset latency, and duration of the underlying neuronal activity.4 Accurate 

estimation of the HRF is essential if fMRI is to be used to detect fine differences in 

the timing of neuronal activation as a means of understanding the temporal sequences 

of brain processes. HRF modeling also enables noninvasive investigation of 

neurovascular coupling which changes with brain aging and which may play a 

pathophysiological role in dementia and cerebrovascular disease.6, 7  

 

The design of fMRI studies affects both estimation efficiency, a measure of the ability 

to estimate the shape of the HRF, and detection power, a measure of the ability to 

detect activation. Previous studies have demonstrated that there is a fundamental 

tradeoff between these characteristics such that designs maximizing detection power 

necessarily have minimum estimation efficiency and designs that achieve maximum 

estimation efficiency cannot attain maximum detection power.8, 9 For example, 

randomized event-related designs offer high estimation efficiency but poor detection 

power, while block designs offer good detection power at the cost of low estimation 

efficiency.9  



A considerable body of fMRI data has already been acquired using block designs to 

maximize signal-to-noise ratio and to increase the likelihood of detecting a response. 

In some of these studies, it would be of interest to examine the HRF explicitly even 

though study designs were not optimized with this in mind. In particular, studies 

involving large numbers of subjects,10, 11 multiple sites,10, 12, 13 special subject 

groups,11, 14 and longitudinal designs14 would be difficult and expensive to replicate. 

Our specific interest in estimating HRF parameters from a block design study was 

stimulated by a large twin study. Here we were interested in how robustly HRF 

parameters could be estimated as a prelude to examining the heritability of the 

hemodynamic response function. We approached this question firstly by comparing 

the performance of different HRF models. We then examined the test-retest reliability 

of HRF parameter estimation. This allowed us to identify which HRF traits remain 

stable over time, providing some insight into the extent to which individual 

parameters serve as variables reflecting a biological trait or an experimental state. 

Test-retest reliability was examined in 82 healthy young adult twins tested with the 

same fMRI paradigm on two occasions. We examined the following parameters of the 

HRF: height (H), time to peak (T), full width at half maximum (W), and onset (O), 

respectively reflecting the magnitude, peak latency, duration, and onset latency of the 

localized increase in blood flow with neural activation.  

 

Method 

HRF model and features  

The blood oxygenation level dependent (BOLD) fMRI signal was modeled as the 

convolution of the stimulus function and the HRF. Before assessing test-retest 

reliability in human data, we assessed the identifiability of five HRF models, 



summarized in Table 1, in simulated fMRI time series. Model I was the canonical 

HRF used in SPM8 (The Wellcome Trust Centre for Neuroimaging, London, UK), in 

which only the height parameter A varies. Models II, III, and IV were variants of the 

canonical HRF and comprise the sum of two or three gamma functions. Model V was 

the sum of inverse logit functions used by Lindquist et al..4, 15 The number of free 

parameters for model V was reduced from nine (three inverse logit functions) to seven 

by explicitly imposing the conditions that the fitted response should start and end at 

zero4,15 noting that the other models were implicitly constrained to the same condition 

by their equations. Models III and V were chosen because they were previously found 

to have low parameter bias for event-related designs.4 Model IV was chosen as it can 

model the initial dip and post-stimulus undershoot.16  

------------------- 

Table 1 

-------------------- 

We used the following summary HRF features: height (H), defined as the maximum 

signal change during the peri-stimulus time window (30 seconds was used for this 

study); time to peak (T), the time taken from start time to the time when signal change 

reached its maximum value; full width at half maximum of the HRF (W); the onset 

(O), the first time point following the stimulus at which signal intensity exceeded 0.1 

x H (Figure 1a). 

------------------- 

Figure 1 

-------------------- 

Simulation of fMRI signal time course  

fMRI signal time courses were simulated using known HRFs to test the performance 



of different HRF models. Three ground-truth HRFs were created (Figure S1). In 

Simulation 1, the HRF was generated using the balloon model.17, 18 The HRF was 

generated using a single input at 1.5s with 0.1s duration and using typical parameters 

obtained empirically in a previous study: neuronal efficacy 0.54, signal decay 1.54, 

auto-regulation 2.46, transit time 0.98, stiffness parameter, 0.33, resting oxygen 

extraction, 0.34, and resting blood volume fraction, 0.06.18 The HRF in Simulation 2 

was generated using the sum of four inverse logit functions to create four segments of 

HRF time course: 

h(t) = Ai
i=1

4

∑ 1
1+ e(t−Ti )/Di

 ,                                                   (6) 

in which A1 = -0.2, A2 = 1.8, A3 = -1.8, A4 = 0.2, T1 = 0.1, T2 = 4, T3 = 10, T4 = 20, D1 = 

0.8, D2 = 1, D2 = 1 and D3 = 1.2. These parameters were determined empirically as 

generating an HRF shape with summary features (H, W, T, and O) in keeping with 

published values.19, 20 In Simulation 3, we used the sum of three gamma functions to 

generate the HRF: 

h(t) = (Ai
i=1

3

∑ tα i−1βi
α i e−βit

Γ(α i )
)                                                 (7), 

in which A1 = -0.2, A2 = 10, A3 = -3.6, α1= 1.5,  α 2= 6.6, α 3= 15,  β1= 0.8,  β2 = 0.8,  

and β3  = 1. Figure 1 illustrates the procedures we used to simulate the fMRI time 

series. We used a block design stimulus function comprising 16 alternating blocks of 

rest and active conditions (8 for each condition). Each active block included 16 trials 

of 0.2s duration with 0.8s gap (Figure 1b). Random noise was added to achieve 

signal-to-noise ratio (SNR) levels of 50, 100 and 150 (Figure 1d). Noise was added 

without consideration of autocorrelation: 

TC = TC × (1+σ × randn) ,                                              (8) 



where TC is the time course of simulated fMRI data; σ is the standard deviation (0.02, 

0.01, and 0.067 for SNR of 50, 100, and 150, respectively); and the randn  refers to a 

vector of pseudorandom values drawn from the standard normal distribution with the 

same length as TC. The range of SNR levels was selected given previous studies 

showing that the minimum SNR for detecting signal change in fMRI studies is 69 and 

the highest possible SNR is 154.21 The simulated signal was sampled according to a 

typical fMRI acquisition with TR = 2.1s (Figure 1e). Each simulation was run 100 

times. 

 

HRF model selection 

HRF modeling was performed using an in-house MATLAB (MATLAB R2010a, The 

MathWorks Inc., Natick, MA) toolkit, sHRF, which is publicly available at our 

website (http://www.cai.uq.edu.au/shrf-toolkit). The fMRI time courses were high-

pass filtered with a 128 s discrete cosine basis set and then fitted with the convolution 

of the HRF models (Table 1) and the stimulus function:22 

TC = h(t)∗u(t)+C   ,                                               (8) 

where h(t)  and u(t)  are the HRF and stimulus function, respectively. For the fitting 

we used a modified constrained Nelder-Mead Simplex algorithm that allows the use 

of constraints specified as parameter bounds 

(http://www.mathworks.com/matlabcentral/fileexchange/8277). Fitting was initialized 

using parameters which generated an initial HRF shape that closely matched that of 

the canonical HRF. Initial values and constraints for each model are summarized in 

Table 1. Parameter constraints were set empirically to cover plausible HRFs with the 

following characteristics: an initial dip with a minimum at 0-3s of magnitude 0-5%; 

peak BOLD signal at 2-10s of magnitude 0-15%; signal undershoot with a minimum 



at 6-25s of magnitude 0-10%. The five models cover the same space of possible HRFs 

except where the functional form imposes a limitation in the ability to describe the 

HRF. For example, Model I covers the same space for the amplitude of the BOLD 

peak as other models but does not allow temporal variation; Model II covers the same 

space for the BOLD peak and undershoot as Models III – V but the functional form 

does not allow an initial dip. The parameter C allows baseline adjustment of the fitted 

time course to match that of the simulated time series (Figure 1d). The trueness of 

estimated HRF parameters or the closeness of agreement between measured and 

ground truth values was assessed by calculating the relative deviation from the values 

for the HRF used to generate the simulated fMRI time course, i.e. the difference 

between estimated and ground truth values divided by the ground truth value. The 

measure of precision, or relative uncertainty, used in this study was the inter-quartile 

range of relative deviation from the values for the HRF used to generate the simulated 

fMRI time course. Trueness and precision were summarized using boxplots of the 

simulation results created in MATLAB (MATLAB R2010a, The MathWorks Inc., 

Natick, MA). The identifiability of HRF models was assessed using their Akaike 

weights,23 which is the probability of each model transformed from the Akaike 

Information Criterion (AIC):  

wi = e
−1
2
Δi (AIC ) / e

−1
2
Δ j (AIC )

j=1

M

∑ , Δi (AIC) = AICi −min(AIC)                  (9)                                          

in which M is number of models tested and Δi (AIC)  is the difference between the 

AIC of each model and that of model with the smallest AIC value. In this study, we 

used the AIC for finite samples:24 

AIC = n ln(RSS / n)+ 2k(k +1) / (n − k −1)                             (10) 



where RSS is the residual sum of squares between the fitted and fMRI time courses, n 

is the sample size, and k is the number of parameters. The HRF model with the 

highest AIC weight was selected for subsequent analyses of parameter estimation and 

reproducibility. 

 

Parameter estimation from block design fMRI data 

The noise in measured fMRI time series and sparse sampling in acquired data may 

lead to HRF parameter mis-specification. To examine this, we used the balloon model 

simulation17, 18 as the ground truth. The HRF parameters were varied in three ways: 1. 

H only, 2. T and O only, and 3. W, T, and O only. As illustrated in Figure S2, varying 

T unavoidably changed O and varying W unavoidably changed T and O. The temporal 

SNR was set at 100, a typical SNR for fMRI data according to previous reports.25, 26 

The highest variability across subjects observed in the literature is 25%.1, 3, 19 Hence, 

we varied ground truth HRF parameter values by 25%, 15% and 10%. The same 

simulation procedure was used as for model comparison except that only Model III 

was used. The simulation was executed 100 times for each type and level of 

parameter variation. The estimated HRF parameters were compared using the paired 

t-test in SPSS20 (IBM, New York). 

 

Variations in the block design paradigm 

To investigate the influence of variations in the block design paradigm on the trueness 

and precision of HRF modeling, the experimental conditions of the block design were 

systematically varied: 1. the number of blocks was varied from 1 block to 8 blocks in 

steps of 1 block; 2. block length was varied from 4s to 16s in steps of 2s; 3. stimulus 

duration was varied from 0.2s to 6.2s in steps of 1s and a stimulus duration of 16s in 



individual blocks (long block design) was also evaluated; 4. the gap between 

individual stimuli in each block was varied from 0.8s to 6.8s in steps of 1s. 

Simulation of the fMRI time course was carried out as described above using the 

balloon model to generate ground truth, a SNR of 100 and Model III. Each simulation 

was executed 100 times. Trueness and precision for each paradigm were calculated as 

described above.  

 

Experimental fMRI time course data  

The data we analyzed were acquired as part of a prior fMRI study,11 the Queensland 

Twin Imaging Study (QTIMS).27 Retrospective utilization of the data was approved 

by the Research Ethics Committee of the Queensland Institute of Medical Research 

and The University of Queensland in compliance with the Australian National 

Statement on Ethical Conduct in Human Research. Functional MRI data from 30 male 

and 52 female healthy young adult twins of mean age 22.5 ± 2.5 (Standard Deviation) 

years were included. For all participants, the fMRI scans were repeated 2-6 months 

later (mean 117 ± 56 days).  

 

Participants performed the 0- and 2-back versions of the N-back working memory 

task. The detailed fMRI experimental procedure is described in a previous report.28 In 

the N-back task, a series of numbers is presented on a screen. The 0-back condition 

required participants to respond to the number currently shown on the screen. The 2-

back condition required participants to respond to the number presented 2 trials 

earlier. The number was presented for 200 ms with an 800 ms interval between 

stimuli and 16 trials per block. In total, 16 alternating blocks were performed for the 

two conditions (8 blocks per condition). 



 

The 3D T1-weighted MR image and echo planar imaging (EPI) data were acquired on 

a 4T Bruker Medspec whole body scanner (Bruker, Germany). 3D T1-weighted 

images were acquired using an MP-RAGE pulse sequence (TR = 2500 ms, TE = 3.83 

ms, T1 = 1500 ms, flip angle = 15 degrees, 0.89 × 0.89 × 0.89 mm). For each 

participant, 127 sets of EPI data (TR = 2.1 s, TE = 30 ms, flip angle = 90, 3.6 × 3.6 × 

3.0 mm) were acquired continuously during the tasks. 

 

The fMRI data were analyzed using Statistical Parametric Mapping (SPM8, the 

Wellcome Trust Centre for Neuroimaging, London, UK). The first five EPI volumes 

were discarded to ensure that tissue magnetization had reached steady state. The 

spatial preprocessing included 2-pass motion correction29 and spatial normalization to 

the average brain T1 template30 implemented in SPM8. Normalized volumes were 

smoothed with an 8 × 8 × 8 mm full width half maximum Gaussian kernel. In a first 

level analysis of individual subject data, we determined locations of activation using 

the general linear model with a finite impulse response (FIR) basis function. The 2-

back minus 0-back contrast images were then entered into a group-level, random-

effects one-sample t-test to identify the common activation voxels (P < 0.05 with 

family wise error rate adjustment for multiple comparisons). 

 

Four regions identified at the group level were selected for HRF modeling: left and 

right middle frontal gyrus and left and right angular gyrus (Figure S3). Volumes of 

interest (VOIs) were defined as the overlap of an existing probabilistic atlas of each 

structure in stereotaxic coordinate space31 with group activation regions. For each 

participant, the fMRI time course was extracted by averaging the signal intensity at 



each time point in the voxels with the top 12.5% of SPM t statistics within each VOI. 

The top 12.5% is used here to accommodate individual variation in the pattern of 

functional activation within each VOI. The threshold was selected empirically as the 

value when the extracted time course stabilized as the percentage was decreased from 

100%, 50%, 25%, to 12.5%. The HRF model selected from the simulation study was 

fitted to the extracted time series and used to estimate HRF parameters. AIC weights 

were also calculated for each HRF model using real time series data.  

 

Analysis of test-retest reliability 

For each brain region and each HRF parameter, the intra-class correlations (ICCs) of 

the two experimental sessions were calculated using SPSS20 (IBM, New York) using 

a two factor mixed effects model and tests of significant difference in ICC from zero 

performed.32 Because the participants were biologically related monozygotic and 

dizygotic twins, the ICCs of the HRF heights from the first-born participant in each 

twin pair were also evaluated to assess whether relatedness between participants 

affected the reliability results. The reliability of the performance measure used in the 

experiment has been reported previously.11  



Results 

Simulation study 

Figure 2 summarizes the HRF parameter estimates from the simulations. Parameter 

estimation was considered accurate if estimated values did not differ significantly (i.e. 

P > 0.05) from the corresponding ground truth values. H was estimated accurately for 

all SNR levels and all models except for Model V at an SNR of 50 in simulation 1 (P 

< 0.05, one sample t-test). For Model I, T, W, and O are fixed and there is only one 

free parameter. Models II, III, and IV were able to estimate T, W, and O of the HRF 

for all noise levels accurately. Model V was able to estimate T and W accurately at all 

noise levels but did not estimate O accurately (P < 0.05 for all 3 simulations). The 

central line and lower and upper box boundaries of the box plots in Figure 3 

respectively represent the median, 25th and 75th percentiles of 100 simulations. 

Models with more free parameters showed a lower precision (wider range) of 

parameter estimation but higher trueness (smaller relative deviation) than those with 

fewer parameters. Model I had the least variation but the highest bias of parameter 

estimation. For all three simulations, the variation and bias of parameter estimation 

decreased with increasing SNR for all models. For Models II-V, T was estimated with 

the highest precision and trueness followed by W, H, and O.  

------------------- 

Figure 2 

-------------------- 

Table 2 summarizes the AIC of different models for data with different noise levels. 

Model III had the highest AIC weights and Model I the lowest across different 

simulations and noise levels. 

------------------- 



Table 2 

-------------------- 

Results for HRF parameter estimation are summarized in Table 3. The selected HRF 

model (Model III) was able to identify parameter differences exceeding 10% with 

SNR of 100. There were no instances in which significant changes in one parameter 

resulted from variation in another parameter.  

   ------------------- 

 Table 3 

   ------------------- 

Results of parameter estimation with different block design paradigms are 

summarized in Figure 3 using boxplots constructed in the same manner as Figure 2. 

For less than 6 blocks, mean estimated H, W, and O generally had relative errors 

greater than 0.1 and an interquartile range greater than 0.5 (Figure 3a). Trueness was 

similar across paradigms with different block lengths. However, precision was 

increased with reduced block length (Figure 3b). Both trueness and precision of 

parameter estimation increased with greater stimulus duration within each block 

(Figure 3c). Trueness and precision also increased when the gap between stimuli was 

increased to 3.8s and remained similar with larger gaps (Figure 3d).  

-------------- 

Figure 3 

-------------- 

 

Real fMRI data 

AIC weights for the models using real fMRI data were consistent with results from 

simulations (Table 2). Model III had the highest AIC weights. Activation maps 



between the two experimental sessions were highly reproducible (Figure S3). 

Quantitative assessment of the repeatability of the activation map between two 

experimental sessions has been reported previously.11 The ICC(3,1) of HRF 

parameters estimated in the two experimental sessions using Model III are 

summarized in Table 4. H and T are highly reproducible, W is moderately 

reproducible and reproducibility of O is low. The 95% confidence intervals of all 

parameters overlap between the two experimental sessions. H is lower in session 2 

than in session 1. A practice effect was also observed in the performance data.11 

Biological relatedness between participants did not affect reliability results. The ICCs 

of HRF heights from the first-born participant in each twin pair (N = 41) for left and 

right MFG and left and right AG were 0.64 (P < 0.01), 0.58 (P < 0.01), 0.63 (P < 

0.01), and 0.64 (P < 0.01), respectively.  

    ------------------- 

Table 4 

-------------------- 

 

Discussion 

Modeling of the HRF using fMRI is a non-invasive method to investigate the brain’s 

hemodynamic response to neuronal activation. In this study, we found that with block 

design fMRI paradigms, most HRF models were able to estimate HRF parameters 

except for Model V which had difficulty estimating onsets. The sum of two gamma 

functions with six free parameters had the greatest identifiability of the five models 

tested but the accuracy of parameter estimation varied with block design attributes. H, 

T and W were reproducible between two experimental sessions. 

 



We used computer simulations with a known ground truth to assess the performance 

of the HRF models. In the simulations, Gaussian noise was added at each SNR level 

without consideration of autocorrelation. However, fMRI noise typically exhibits 

temporal dependence (autocorrelation), therefore, the SNR level is slightly lower than 

in practice. Parrish et al. demonstrated that a minimum SNR of 69 is required to 

detect a 1% BOLD signal change with 112 image volumes.21 Our results were similar, 

showing that Models I-IV could estimate H accurately with a SNR of 50 and 122 

image volumes. The simulation results for the five models showed that models with 

more free parameters had lower precision but higher trueness of HRF parameter 

estimation (Figure 3). The canonical HRF (Model I) had the least variance, but the 

estimated height was more likely to be biased. The trade-off between the number of 

parameters and precision and trueness motivated the use of AIC weights for model 

selection. 

 

A key consideration in HRF model selection is the number and nature of a priori 

assumptions. Recently, Lindquist et al. assessed the performance of different HRF 

models for event-related designs in terms of bias, mis-specification and statistical 

power4. Seven models were compared: the canonical HRF, canonical HRF with 

temporal derivatives, canonical HRF with temporal and dispersion derivatives, FIR, 

smoothed FIR, sum of two gamma functions, and the sum of three inverse logit 

functions. The study suggested the sum of two gamma functions is not optimal for 

fitting noisy data from event-related studies and should only be used on regions where 

it is known that there is signal present4. Our study focused on HRF modeling using 

block design fMRI data in which signal is present. As illustrated in the simulation 

study (Figure 3), models with few assumptions are more flexible or may handle HRF 



shapes with unexpected response behaviors more accurately than models with many 

fixed parameters. However, a greater number of free parameters may also lead to 

overfitting of noise, lowering precision. This may explain the relatively poor 

performance of Model V in our study. In Lindquist et al.,4 superior performance for 

Model V compared to gamma function models for event-related designs that have a 

high HRF estimation efficiency8 and high temporal resolution (TR=0.5s),4,15 most 

likely reflects Model V’s greater flexibility.4,15 In contrast, in the present study of 

block designs with low estimation efficiency, prior knowledge implicitly encoded in 

the gamma function models constrained them from overfitting noisy data. We used 

AIC weights to judge model identifiability. The AIC is a measure of the relative 

goodness of fit of a statistical model compared to others, with a penalty given for 

using extra parameters.33 The AIC with a correction for finite sample sizes was used 

in this study (Equation 10); the correction is minimized when the sample size is 

large.24 Based on AIC values, Wagenmakers et al. further proposed Akaike weights, 

which may be directly interpreted as conditional probabilities for each model.23 For 

example, an AIC weight of 0.41 for Model III with real data in our study indicates 

that this model has a 41% probability of being the best model of those tested. The 

AIC values of different models are consistent between the simulations and real fMRI 

data. The results suggest that the sum of two gamma functions with six parameters is 

the best HRF model when it is known that there is signal present. With a typical fMRI 

SNR of 100, a two gamma functions, 6 parameter model can discern 15% HRF 

feature variation without misattributing variation in one parameter to another. Inter-

and intra-subject variability of the HRF has been studied previously in event-related 

fMRI experiments.1, 3, 19, 34-36 In the present examination of a block design study, H, T, 

and W were reproducible between two experimental sessions, supporting the validity 



of these HRF parameters as biological measures. The repeatability results may also 

provide insight into neural responses and neurovascular coupling. For example, the 

reproducibility of H between trials implies that the neural firing rate as well as the 

vascular response induced by the same task across different sessions for each 

individual was very similar. In previous studies5, 37, 38 the height of the BOLD 

response to visual stimulation was negatively correlated with resting GABA 

concentration in the visual cortex. If this relationship is widespread in the brain, our 

results suggest that endogenous factors, such as neurotransmitter concentration, which 

regulate the balance between excitation and inhibition in the individual brain may also 

remain relatively stable. The reproducibility of T and low reproducibility of O has 

implications for the ability to infer synchrony and directional influence among neural 

populations during task performance and in the resting state from block design fMRI 

data. Our findings on HRF test-retest reliability, particularly for temporal parameters, 

are in broad agreement with results from studies optimized for HRF estimation by the 

use of event-related designs and long baseline periods,1, 36 in which time to peak had 

the greatest test-retest reliability and time when the BOLD response begins to rise 

steeply from baseline (similar to O in this study) had the largest test-retest variation.  

In this study, we represented neural activity by the stimulus time course, an 

assumption underlying commonly used methods for statistical parametric mapping. 

To the extent that this assumption is violated, it is likely that the HRF model 

parameters estimated here contain a component of neural activity in addition to 

vascular reactivity. Several techniques have been recently proposed to dynamically 

filter fMRI time courses in order to estimate neural activity as well as the vascular 

response explicitly.39, 40 Application of these techniques in future studies may allow 

the reproducibility of the HRF to be estimated more specifically.  



 

Many HRF models have been proposed in the literature. Our study was restricted to 

five models that are are commonly used or have been shown in prior studies to be less 

susceptible to mis-specification errors (sum of inverse logit functions) or parameter 

bias (sum of two gamma functions). In this study, we examined vascular responses to 

neural activity evoked by a single cognitive function in four brain structures that 

demonstrated robust activation. Further studies using other activation tasks are needed 

to assess generalizability of our findings to other brain regions and brain functions. 

 

Block designs are not optimal for HRF estimation and random event-related designs 

and m-sequence designs have been shown to have higher estimation efficiency.9 

Nonetheless, our data on model selection and on the reliability of HRF estimation 

should increase the utility of existing block design fMRI data. Indeed, the 

methodology presented in this paper will be used to analyze the heritability of HRF 

parameters in a large twin cohort using block design fMRI data that were originally 

collected to address heritability of spatial patterns of functional activation with a 

working memory task.11 In our tests of the effects of varying the attributes of the 

block design paradigm, we found that at least 6 blocks are required to model the HRF 

accurately. The simulations showed that prolonging the length of blocks does not 

affect the trueness of the parameter estimation but decreases precision. This result is 

in keeping with HRF modeling being more sensitive to the initial increase and the 

final decrease of the signal than the plateau stages in the middle of block. Prolonging 

the block introduces additional noise reducing precision. Decreasing the frequency of 

stimuli in each block by increasing the gap between stimuli increases the accuracy of 

parameter estimation. This finding agrees with previous a theoretical model 



describing the trade-off between estimation efficiency and detection power8 in the 

sense that block designs with decreasing stimulus frequency in each block bear a 

greater resemblance to event-related designs.  

 

In conclusion, we investigated trueness, precision, model identifiability and test-retest 

reproducibility of parameter estimates for HRF models with a block design paradigm 

using simulated and real fMRI data. The HRF features of height, time to peak, and 

width were reproducible between test sessions and may be useful as measures to 

characterize the coupled vascular response to neural activity in individual subjects. 
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Figure Legends 

Figure 1. The procedure used to simulate the fMRI signal time course. (a) A typical 

HRF generated using three gamma functions. Illustrated are the HRF parameters used 

to describe HRF shape: height (H), time to peak (T), full-width-at-half-maximum (W), 

and onset (O). (b) The stimulus function created according to a typical experimental 

design used in human fMRI experiments. (c) The signal time course generated by 

convolution of HRF and the stimulus function. (d) The signal time course after adding 

random noise. The average random variation of the signal was set to 50% of the true 

signal change.  

 

Figure 2. Box-and-whisker plot of the relative differences of estimated HRF 

parameters from the true values in the simulation study. Outliers were defined as 

exceeding 3 times the standard deviation; all data including outliers were included in 

the analysis. Rows from top to bottom are the results for height (H), time to peak (T), 

width (W), and onset (O). Columns from left to right are results for Simulation 1 

(‘balloon’ model), Simulation 2 (sum of four inverse logit functions) and Simulation 3 

(sum of three gamma functions). 

  

Figure 3. Box plots of estimated HRF features with systematic variation in attributes 

of the block design paradigm. The columns from left to right relate to estimated 

height, time-to-peak, width, and onset respectively. The rows from top to bottom 

relate to variation in the number of blocks (a), the length of blocks (b), the duration of 

stimuli in each block (c), and the gap between individual stimuli (d). Outliers were 

defined as exceeding 3 times the standard deviation. Outliers were not excluded from 

data analysis.  
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Figure 1. The procedure used to simulate the fMRI signal time course. (a) A typical 

HRF generated using three gamma functions. Illustrated are the HRF parameters used 

to describe HRF shape: height (H), time to peak (T), full-width-at-half-maximum (W), 

and onset (O). (b) The stimulus function created according to a typical experimental 

design used in human fMRI experiments. (c) The signal time course generated by 

convolution of HRF and the stimulus function. (d) The signal time course after adding 

random noise. The average random variation of the signal was set to 50% of the true 

signal change.  



 
Figure 2. Box-and-whisker plot of the relative differences of estimated HRF 

parameters from the true values in the simulation study. Outliers were defined as 

exceeding 3 times the standard deviation; all data including outliers were included in 

the analysis. Rows from top to bottom are the results for height (H), time to peak (T), 

width (W), and onset (O). Columns from left to right are results for Simulation 1 

(‘balloon’ model), Simulation 2 (sum of four inverse logit functions) and Simulation 3 

(sum of three gamma functions). 



 
Figure 3. Box plots of estimated HRF features with systematic variation in attributes 

of the block design paradigm. The columns from left to right relate to estimated 

height, time-to-peak, width, and onset respectively. The rows from top to bottom 

relate to variation in the number of blocks (a), the length of blocks (b), the duration of 

stimuli in each block (c), and the gap between individual stimuli (d). Outliers were 

defined as exceeding 3 times the standard deviation. Outliers were not excluded from 

data analysis.  



Table	  1	  Summary	  of	  HRFs§	  

M Equations k P0 Bounds (LB;UB) 

I h(t) = A[ t
5e− t

Γ(6)
− 1
6
t15e− t

Γ(16)
] (1)  1 A0 = 6 A (0; 15) 

II h(t) = A tα1−1β1
α1e−β1t

Γ(α1)
− t

α2−1β2
α2e−β2t

6Γ(α 2 )
⎛
⎝⎜

⎞
⎠⎟

(2)

 
5 

A0 = 6 
α1, 0 = 7 
β1, 0 = 1 
α2, 0 = 16 
β2, 0 = 1 

A (0; 15) 
α1 (2; 10) 
β1 (0.5; 2) 
α2 (6; 25) 
β2 (0; 1.5) 

III h(t) = (Ai
i=1

2

∑ tα i−1βi
α i e−βit

Γ(α i )
) (3)  6 

A1, 0 = 6 
α1, 0 = 7 
β1, 0 = 1 
A2, 0 = 1 
α2, 0 = 16 
β2, 0 = 1 

A1 (0; 15) 
α1 (2; 10) 
β1 (0.5; 2) 
A2 (0; 10) 
α2 (6; 25) 
β2 (0; 1.5) 

IV h(t) = (Ai
i=1

3

∑ tα i−1βi
α i e−βit

Γ(α i )
) (4)  9 

A1, 0 = 0.5 
α1, 0 = 1.5 
β1, 0 = 0.8 
A2, 0 = 6 
α2, 0 = 7 
β2, 0 = 1 
A3, 0 = 1 
α3, 0 = 16 
β3, 0 = 1 

A1 (0; 5) 
α1 (0; 3) 
β1 (0.5; 2) 
A2 (0; 15) 
α2 (2; 10) 
β2 (0.5; 2) 
A3 (0; 10) 
α3 (6; 25) 
β3 (0; 1.5) 

V h(t) = Ai
i=1

3

∑ 1
1+ e(t−Ti )/Di

(5)  7 

A1, 0 = 1 
T1, 0 = 4 
D1, 0 = 1 
T2, 0 = 5 

D2, 0 = 1.5 
T3, 0 = 10 
D3, 0 = 2 

A1 (0; 10) 
T1 (0; 5) 

D1 (0; 10) 
T2 (3; 10) 
D2 (0; 10) 
T3 (6; 25) 
D3 (0; 10) 

§:	   M:	  models;	   k:	   the	   number	   of	   free	   parameters	   in	   the	   HRF	  models;	   P0:	   initial	  
values	  for	  model	  fittings;	  LB:	  lower	  bounds;	  UB:	  upper	  bounds; A :	  height;	  Γ :	  the	  
gamma	   function;	   Ai 	  α i ,	  βi ,	   Ti,	   and	   Di	   control	   the	   height	   and	   direction,	   shape,	  
scale,	  shift	  center,	  and	  slope	  of	  the	  HRF	  respectively.	  	  



Table	  2	  Akaike	  weights	  (Wi)	  for	  HRF	  models	  for	  computer	  simulations	  and	  real	  fMRI	  data§	  

HRF	  Model	  
	  Simulation	  1	   Simulation	  2	   Simulation	  3	  

Real	  data	  
150	   100	   50	   150	   100	   50	   150	   100	   50	  

III	  (2	  Gamma	  functions	  6	  parameters)	   0.34	   0.31	   0.25	   0.36	   0.33	   0.27	   0.4	   0.33	   0.3	   0.41	  

IV	  (3	  Gamma	  functions	  9	  parameters)	   0.27	   0.23	   0.2	   0.34	   0.22	   0.22	   0.32	   0.25	   0.22	   0.36	  

II	  (2	  Gamma	  functions	  5	  parameters)	   0.22	   0.21	   0.23	   0.25	   0.3	   0.23	   0.26	   0.26	   0.23	   0.16	  

V	  (3	  Inverse	  logit	  functions	  7	  parameters)	   0.16	   0.2	   0.2	   0.05	   0.15	   0.21	   0.02	   0.15	   0.18	   0.07	  

I	  (Canonical	  function)	  	   0.01	   0.05	   0.12	   <0.01	   <0.01	   0.07	   <0.01	   0.01	   0.07	   <0.01	  

	  
	  	  	  §:	  The	  Akaike	  weights	  were	  calculated	  for	  each	  model	  at	  a	  specific	  SNR	  level	  (150,	  100,	  and	  50)	  with	  different	  ground	  
truth	  generation	  method	  (Simulation	  1,	  2	  and	  3)	  on	  simulation	  data	  and	  on	  real	  fMRI	  data.	  The	  simulation	  was	  run	  
100	  times	  for	  each	  condition.	  	  



Table 3 Estimation of HRF parameter variation§ 

P 
 

Δ = 0 
 

Estimated parameters (± SD) with variations in percentage 

ΔH = 10 
 

ΔH = 15 
 

ΔH = 25 
 

ΔT = 10 
O = 18 

ΔT = 15 
O = 32 

ΔT = 25 
O = 50 

ΔW = 10 
ΔT = 9 

ΔW = 15 
ΔT = 13 
O = 4 

ΔW = 25 
ΔT = 20 
O = 4 

H (%) 1.12 ± 0.46 1.21 ± 0.49 1.31± 0.32* 1.41 ± 0.38** 1.14 ± 0.39 1.06± 0.39 1.11 ± 0.37 1.13± 0.45 1.17 ± 0.39 1.18 ± 0.35 
T (s) 4.70 ± 0.92 4.65 ± 0.91 4.71 ± 0.78 4.45 ± 0.65 5.08 ± 0.81* 5.53 ± 0.75** 5.82± 0.68** 5.14 ± 0.93* 5.14 ± 0.84* 5.35 ± 0.85** 
W (s) 3.85 ± 1.07 4.05 ± 1.07 4.10 ± 0.96 4.00 ± 0.98 4.08 ± 1.01 4.23 ± 1.25 4.15 ± 0.73 4.53 ± 1.09** 4.51 ± 1.01** 4.77 ± 0.97* 
O (s) 1.90 ± 0.88 1.79 ± 0.84 1.83 ± 0.74 1.74 ± 0.82 2.20 ± 0.90 2.41± 0.85* 2.79 ± 0.89* 1.98 ± 0.81 2.02 ± 0.89 2.08 ± 0.89* 

§: P, HRF parameters; H, height; T, time to peak; W, width; O, onset; Δ, variation (no variation is introduced if Δ = 0 or the parameter is 
absent). The * and ** denote P < 0.05 and P < 0.001, respectively. 



Table	  4.	  The	  ICC(3,1)	  of	  HRF	  parameters	  between	  the	  two	  experimental	  sessions§	  

Structures	  
Parameters	  

Height	   Time	  to	  peak	   Width	   Onsets	  

L-‐MFG	   0.6**	  (1.23,	  1.56;	  1.03,	  1.26)	  	   0.53**	  (3.57,	  4.09;	  3.73,	  4.21)	   0.56**	  (3.49,	  4.08;	  3.84,	  4.27)	   0.22	  (1.17,	  1.5;	  1.21,	  1.49)	  

R-‐MFG	   0.52**	  (1.21,	  1.52;	  1.05,	  1.28)	   0.5*	  (3.7,	  4.29;	  3.94,	  4.52)	   0.45*	  (3.75,	  4.39;	  4.26,	  5.08)	   0	  (1.22,	  1.54;	  1.23,	  1.59)	  

L-‐AG	   0.74**	  (1.28,	  1.56;	  1.02,	  1.29)	   0.7**	  (3.66,	  4.19;	  3.78,	  4.35)	   0.48*	  (3.75,	  4.27;	  3.91,	  4.74)	   0.25	  (1.18.	  1.49;	  1.24,	  1.57)	  

R-‐AG	   0.6**	  (1.12,	  1.37;	  1.02,	  1.26)	   0.45**	  (3.68,	  4.29;	  3.8,	  4.43)	   0.33*	  (4.02,	  4.74;	  4.28,	  4.91)	   0.42*	  (1.12,	  1.47;	  1.15,	  1.59)	  

§:	  L-‐:	  left,	  R-‐:	  right,	  MFG:	  middle	  frontal	  gyrus,	  AG:	  angular	  gyrus,	  *:	  P	  ≤	  0.05	  and	  **:	  P	  <	  0.001.	  The	  numbers	  in	  the	  parentheses	  are	  the	  

95%	  confidence	  interval	  of	  the	  parameters	  (session	  1	  lower	  bound,	  session	  1	  upper	  bound;	  session	  2	  lower	  bound,	  session	  2	  upper	  

bound)	  	  

 


