145 research outputs found

    Cost benefit analysis of mothership concept and investigation of optimum operational practice for offshore wind farms

    Get PDF
    In far offshore, challenging climate conditions limit the operability and the accessibility of the maintenance vessels significantly.Furthermore, if significant time is spent for the travels between offshore windfarm and O&M port; maintenance tasks cannot be carried out. A mothership can provide the solution for the operators. Due to the fact that the mothership can be moored to a close location to the offshore wind farm, the reaction time to the failures can be minimised; thus the availability of the offshore wind farm can be maximised. In this context, the focus of this research is the cost benefit analysis of the mothership concept and the investigation of the optimum operational practice, which brings financial and operational benefits. This is achieved by performing operational simulations in the offshore wind operational expenditure and logistics optimisation tool StrathOW-OM, which is developed bythe University of Strathclyde and commercial partner organisations. Results show that significant time is spent between offshore windfarm and port, which increases the downtime. October-December is identified as the most critical period for chartering a mothership

    Early transcriptional responses to human enteric fever challenge

    Get PDF
    Enteric fever, caused by oral infection with typhoidal Salmonella serovars, presents as a non-specific febrile illness preceded by an incubation period of 5 days or more. The enteric fever human challenge model provides a unique opportunity to investigate the innate immune response during this incubation period, and how this response is altered by vaccination with the Vi polysaccharide or conjugate vaccine. We find that on the same day as ingestion of typhoidal Salmonella, there is already evidence of an immune response, with 199 genes upregulated in the peripheral blood transcriptome 12 hours post-challenge (false discovery rate <0.05). Gene sets relating to neutrophils, monocytes, and innate immunity were over-represented (false discovery rate <0.05). Estimating cell proportions from gene expression data suggested a possible increase in activated monocytes 12 hours post-challenge (P = 0.036, paired Wilcoxon signed-rank test). Furthermore, plasma TNF-α rose following exposure (P = 0.011, paired Wilcoxon signed-rank test). There were no significant differences in gene expression (false discovery rate <0.05) in the 12 hours response between those who did and did not subsequently develop clinical or blood culture confirmed enteric fever or between vaccination groups. Together, these results demonstrate early perturbation of the peripheral blood transcriptome after enteric fever challenge and provide initial insight into early mechanisms of protection

    Homologous and heterologous re-challenge with Salmonella Typhi and Salmonella Paratyphi A in a randomised controlled human infection model

    Get PDF
    Enteric fever is a systemic infection caused by Salmonella Typhi or Paratyphi A. In many endemic areas, these serovars co-circulate and can cause multiple infection-episodes in childhood. Prior exposure is thought to confer partial, but incomplete, protection against subsequent attacks of enteric fever. Empirical data to support this hypothesis are limited, and there are few studies describing the occurrence of heterologous-protection between these closely related serovars. We performed a challenge-re-challenge study using a controlled human infection model (CHIM) to investigate the extent of infection-derived immunity to Salmonella Typhi or Paratyphi A infection. We recruited healthy volunteers into two groups: naïve volunteers with no prior exposure to Salmonella Typhi/Paratyphi A and volunteers previously-exposed to Salmonella Typhi or Paratyphi A in earlier CHIM studies. Within each group, participants were randomised 1:1 to oral challenge with either Salmonella Typhi (104 CFU) or Paratyphi A (103 CFU). The primary objective was to compare the attack rate between naïve and previously challenged individuals, defined as the proportion of participants per group meeting the diagnostic criteria of temperature of ≥38°C persisting for ≥12 hours and/or S. Typhi/Paratyphi bacteraemia up to day 14 post challenge. The attack-rate in participants who underwent homologous re-challenge with Salmonella Typhi was reduced compared with challenged naïve controls, although this reduction was not statistically significant (12/27[44%] vs. 12/19[63%]; Relative risk 0.70; 95% CI 0.41–1.21; p = 0.24). Homologous re-challenge with Salmonella Paratyphi A also resulted in a lower attack-rate than was seen in challenged naïve controls (3/12[25%] vs. 10/18[56%]; RR0.45; 95% CI 0.16–1.30; p = 0.14). Evidence of protection was supported by a post hoc analysis in which previous exposure was associated with an approximately 36% and 57% reduced risk of typhoid or paratyphoid disease respectively on re-challenge. Individuals who did not develop enteric fever on primary exposure were significantly more likely to be protected on re-challenge, compared with individuals who developed disease on primary exposure. Heterologous re-challenge with Salmonella Typhi or Salmonella Paratyphi A was not associated with a reduced attack rate following challenge. Within the context of the model, prior exposure was not associated with reduced disease severity, altered microbiological profile or boosting of humoral immune responses. We conclude that prior Salmonella Typhi and Paratyphi A exposure may confer partial but incomplete protection against subsequent infection, but with a comparable clinical and microbiological phenotype. There is no demonstrable cross-protection between these serovars, consistent with the co-circulation of Salmonella Typhi and Paratyphi A. Collectively, these data are consistent with surveillance and modelling studies that indicate multiple infections can occur in high transmission settings, supporting the need for vaccines to reduce the burden of disease in childhood and achieve disease control. Trial registration NCT02192008; clinicaltrials.gov

    Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Get PDF
    A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi

    Direct inference and control of genetic population structure from RNA sequencing data

    Get PDF
    RNAseq data can be used to infer genetic variants, yet its use for estimating genetic population structure remains underexplored. Here, we construct a freely available computational tool (RGStraP) to estimate RNAseq-based genetic principal components (RG-PCs) and assess whether RG-PCs can be used to control for population structure in gene expression analyses. Using whole blood samples from understudied Nepalese populations and the Geuvadis study, we show that RG-PCs had comparable results to paired array-based genotypes, with high genotype concordance and high correlations of genetic principal components, capturing subpopulations within the dataset. In differential gene expression analysis, we found that inclusion of RG-PCs as covariates reduced test statistic inflation. Our paper demonstrates that genetic population structure can be directly inferred and controlled for using RNAseq data, thus facilitating improved retrospective and future analyses of transcriptomic data

    Inflammasome-Mediated IL-1β Production in Humans with Cystic Fibrosis

    Get PDF
    Inflammation and infection are major determinants of disease severity and consequently, the quality of life and outcome for patients with cystic fibrosis (CF). Interleukin-1 beta (IL-1β) is a key inflammatory mediator. Secretion of biologically active IL-1β involves inflammasome-mediated processing. Little is known about the contribution of IL-1β and the inflammasomes in CF inflammatory disease. This study examines inflammasome-mediated IL-1β production in CF bronchial epithelial cell lines and human patients with CF.Bronchial epithelial cell lines were found to produce negligible amounts of basal or stimulated IL-1β compared to hematopoeitic cells and they did not significantly upregulate caspase-1 activity upon inflammasome stimulation. In contrast, peripheral blood mononuclear cells (PBMCs) from both CF and healthy control subjects produced large amounts of IL-1β and strongly upregulated caspase-1 activity upon inflammasome stimulation. PBMCs from CF patients and controls displayed similar levels of caspase-1 activation and IL-1β production when stimulated with inflammasome activators. This IL-1β production was dependent on NF-κB activity and could be enhanced by priming with LPS. Finally, chemical inhibition of CFTR activity in control PBMCs and THP-1 cells did not significantly alter IL-1β or IL-8 production in response to P. aeruginosa.Hematopoeitic cells appear to be the predominant source of inflammasome-induced pro-inflammatory IL-1β in CF. PBMCs derived from CF subjects display preserved inflammasome activation and IL-1β secretion in response to the major CF pathogen Pseudomonas aeruginosa. However, our data do not support the hypothesis that increased IL-1β production in CF subjects is due to an intrinsic increase in NF-κB activity through loss of CFTR function

    Assessment and Translation of the Antibody-in-Lymphocyte Supernatant (ALS) Assay to Improve the Diagnosis of Enteric Fever in Two Controlled Human Infection Models and an Endemic Area of Nepal.

    Get PDF
    New diagnostic tests for enteric fever are urgently needed to assist with timely antimicrobial treatment of patients and to measure the efficacy of prevention measures such as vaccination. In a novel translational approach, here we use two recently developed controlled human infection models (CHIM) of enteric fever to evaluate an antibody-in-lymphocyte supernatant (ALS) assay, which can detect recent IgA antibody production by circulating B cells in ex vivo mononuclear cell culture. We calculated the discriminative ability of the ALS assay to distinguish diagnosed cases in the two CHIM studies in Oxford, prior to evaluating blood culture-confirmed diagnoses of patients presenting with fever to hospital in an endemic areas of Kathmandu, Nepal. Antibody responses to membrane preparations and lipopolysaccharide provided good sensitivity (>90%) for diagnosing systemic infection after oral challenge with Salmonella Typhi or S. Paratyphi A. Assay specificity was moderate (~60%) due to imperfect sensitivity of blood culture as the reference standard and likely unrecognized subclinical infection. These findings were augmented through the translation of the assay into the endemic setting in Nepal. Anti-MP IgA responses again exhibited good sensitivity (86%) but poor specificity (51%) for detecting blood culture-confirmed enteric fever cases (ROC AUC 0.79, 95%CI 0.70-0.88). Patients with anti-MP IgA ALS titers in the upper quartile exhibited a clinical syndrome synonymous with enteric fever. While better reference standards are need to assess enteric fever diagnostics, routine use of this ALS assay could be used to rule out infection and has the potential to double the laboratory detection rate of enteric fever in this setting over blood culture alone

    Diagnostic host gene signature for distinguishing enteric fever from other febrile diseases

    Get PDF
    Misdiagnosis of enteric fever is a major global health problem, resulting in patient mismanagement, antimicrobial misuse and inaccurate disease burden estimates. Applying a machine learning algorithm to host gene expression profiles, we identified a diagnostic signature, which could distinguish culture‐confirmed enteric fever cases from other febrile illnesses (area under receiver operating characteristic curve > 95%). Applying this signature to a culture‐negative suspected enteric fever cohort in Nepal identified a further 12.6% as likely true cases. Our analysis highlights the power of data‐driven approaches to identify host response patterns for the diagnosis of febrile illnesses. Expression signatures were validated using qPCR, highlighting their utility as PCR‐based diagnostics for use in endemic settings

    Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model

    Get PDF
    Salmonella Typhi is a human host-restricted pathogen that is responsible for typhoid fever in approximately 10.9 million people annually1. The typhoid toxin is postulated to have a central role in disease pathogenesis, the establishment of chronic infection and human host restriction2,3,4,5,6. However, its precise role in typhoid disease in humans is not fully defined. We studied the role of typhoid toxin in acute infection using a randomized, double-blind S. Typhi human challenge model7. Forty healthy volunteers were randomized (1:1) to oral challenge with 104 colony-forming units of wild-type or an isogenic typhoid toxin deletion mutant (TN) of S. Typhi. We observed no significant difference in the rate of typhoid infection (fever ≥38 °C for ≥12 h and/or S. Typhi bacteremia) between participants challenged with wild-type or TN S. Typhi (15 out of 21 (71%) versus 15 out of 19 (79%); P = 0.58). The duration of bacteremia was significantly longer in participants challenged with the TN strain compared with wild-type (47.6 hours (28.9–97.0) versus 30.3(3.6–49.4); P ≤ 0.001). The clinical syndrome was otherwise indistinguishable between wild-type and TN groups. These data suggest that the typhoid toxin is not required for infection and the development of early typhoid fever symptoms within the context of a human challenge model. Further clinical data are required to assess the role of typhoid toxin in severe disease or the establishment of bacterial carriage

    Blood culture-PCR to optimise typhoid fever diagnosis after controlled human infection identifies frequent asymptomatic cases and evidence of primary bacteraemia.

    Get PDF
    BACKGROUND: Improved diagnostics for typhoid are needed; a typhoid controlled human infection model may accelerate their development and translation. Here, we evaluated a blood culture-PCR assay for detecting infection after controlled human infection with S. Typhi and compared test performance with optimally performed blood cultures. METHODOLOGY/PRINCIPAL FINDINGS: Culture-PCR amplification of blood samples was performed alongside daily blood culture in 41 participants undergoing typhoid challenge. Study endpoints for typhoid diagnosis (TD) were fever and/or bacteraemia. Overall, 24/41 (59%) participants reached TD, of whom 21/24 (86%) had ≥1 positive blood culture (53/674, 7.9% of all cultures) or 18/24 (75%) had ≥1 positive culture-PCR assay result (57/684, 8.3%). A further five non-bacteraemic participants produced culture-PCR amplicons indicating infection; overall sensitivity/specificity of the assay compared to the study endpoints were 70%/65%. We found no significant difference between blood culture and culture-PCR methods in ability to identify cases (12 mismatching pairs, p = 0.77, binomial test). Clinical and stool culture metadata demonstrated that additional culture-PCR amplification positive individuals likely represented true cases missed by blood culture, suggesting the overall attack rate may be 30/41 (73%) rather than 24/41 (59%). Several participants had positive culture-PCR results soon after ingesting challenge providing new evidence for occurrence of an early primary bacteraemia. CONCLUSIONS/SIGNIFICANCE: Overall the culture-PCR assay performed well, identifying extra typhoid cases compared with routine blood culture alone. Despite limitations to widespread field-use, the benefits of increased diagnostic yield, reduced blood volume and faster turn-around-time, suggest that this assay could enhance laboratory typhoid diagnostics in research applications and high-incidence settings
    corecore