14 research outputs found

    Prognosis in human glioblastoma based on expression of ligand growth hormone-releasing hormone, pituitary-type growth hormone-releasing hormone receptor, its splicing variant receptors, EGF receptor and PTEN genes

    Get PDF
    Purpose G lioblastoma (GB) is the most frequent brain tumor. Despite recent improvement in therapeutic strategies, the prognosis of GB remains poor. Growth hormone-releasing hormone (GHRH) may act as a growth factor; antagonists of GHRH have been successfully applied for experimental treatment of different types of tumors. The expression profile of GHRH receptor, its main splice variant SV1 and GHRH have not been investigated in human GB tissue samples. Methods We examined the expression of GHRH, fulllength pituitary-type GHRH receptor (pGHRHR), its functional splice variant SV1 and non-functional SV2 by RTPCR in 23 human GB specimens. Epidermal growth factor receptor (EGFR) and phosphatase and tensin homolog gene (PTEN) expression levels were also evaluated by quantitative RT-PCR. Correlations between clinico-pathological parameters and gene expressions were analyzed. Results E xpression of GHRH was found to be positive in 61.9 % of samples. pGHRH receptor was not expressed in our sample set, while SV1 could be detected in 17.4 % and SV2 in 8.6 % of the GB tissues. In 65.2 and 78.3 % of samples, significant EGFR over-expression or PTEN under-representation could be detected, respectively. In 47.8 % of cases, EGFR up-regulation and PTEN down-regulation occurred together. Survival was significantly poorer in tumors lacking GHRH expression. This worse prognosis in GHRH negative group remained significant even if SV1 was also expressed. Conclusion Our study shows that GHRH and SV1 genes expressed in human GB samples and their expression patterns are associated with poorer prognosis

    Subcortical brain alterations in major depressive disorder:findings from the ENIGMA Major Depressive Disorder working group

    Get PDF
    The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=-0.14, % difference=-1.24). This effect was driven by patients with recurrent MDD (Cohen's d=-0.17, % difference=-1.44), and we detected no differences between first episode patients and controls. Age of onset <= 21 was associated with a smaller hippocampus (Cohen's d=-0.20, % difference=-1.85) and a trend toward smaller amygdala (Cohen's d=-0.11, % difference=-1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status

    Model-based optimization of the operation of the coke calcining kiln

    Get PDF
    A mathematical model was recently developed to simulate the calcination process of regular petroleum coke suitable for aluminum industry applications. The model is made of 14 ordinary differential equations describing energy and mass conservation in the gas and in the coke bed, and complemented by correlations and algebraic equations. It calculates temperature and concentration profiles in the kiln, and also yields other information important to kiln operation, such as calcined coke recovery factor and coke loss through the generation of dust. In this paper it is demonstrated that the model is an efficient tool for the optimization of kiln operation. The model is used to study the effect of key control variables upon kiln operation and productivity. Further, it is shown that higher kiln productivity may be obtained with optimized kiln control and without loss of satisfactory kiln operating condition
    corecore