2,400 research outputs found
Decreased soluble guanylate cyclase contributes to cardiac dysfunction induced by chronic doxorubicin treatment in mice
Aims: The use of doxorubicin, a potent chemotherapeutic agent, is limited by cardiotoxicity. We tested the hypothesis that decreased soluble guanylate cyclase (sGC) enzyme activity contributes to the development of doxorubicin-induced cardiotoxicity. Results: Doxorubicin administration (20 mg/kg, intraperitoneally [IP]) reduced cardiac sGC activity in wild-type (WT) mice. To investigate whether decreased sGC activity contributes to doxorubicin-induced cardiotoxicity, we studied mice with cardiomyocyte-specific deficiency of the sGC alpha 1-subunit (mice with cardiomyocyte-specific deletion of exon 6 of the sGC alpha 1 allele [sGC alpha 1(-/-CM)]). After 12 weeks of doxorubicin administration (2 mg/kg/week IP), left ventricular (LV) systolic dysfunction was greater in sGC alpha 1(-/-CM) than WT mice. To further assess whether reduced sGC activity plays a pathogenic role in doxorubicin-induced cardiotoxicity, we studied a mouse model in which decreased cardiac sGC activity was induced by cardiomyocyte-specific expression of a dominant negative sGC alpha 1 mutant (DNsGC alpha 1) upon doxycycline removal (Tet-off). After 8 weeks of doxorubicin administration, DNsGC alpha 1(tg/+), but not WT, mice displayed LV systolic dysfunction and dilatation. The difference in cardiac function and remodeling between DNsGC alpha 1(tg/+) and WT mice was even more pronounced after 12 weeks of treatment. Further impairment of cardiac function was attenuated when DNsGC alpha 1 gene expression was inhibited (beginning at 8 weeks of doxorubicin treatment) by administering doxycycline. Furthermore, doxorubicin-associated reactive oxygen species generation was higher in sGC alpha 1-deficient than WT hearts. Innovation and Conclusion: These data demonstrate that a reduction in cardiac sGC activity worsens doxorubicin-induced cardiotoxicity in mice and identify sGC as a potential therapeutic target. Various pharmacological sGC agonists are in clinical development or use and may represent a promising approach to limit doxorubicin-associated cardiotoxicity
Explant analysis of AneuRx stent grafts: relationship between structural findings and clinical outcome
AbstractObjectiveWe reviewed the structural findings of explanted AneuRx stent grafts used to treat abdominal aortic aneurysms, and relate the findings to clinical outcome measures.MethodsWe reviewed data for all bifurcated AneuRx stent grafts explanted at surgery or autopsy and returned to the manufacturer from the US clinical trial and worldwide experience of more than 33,000 implants from 1996 to 2003. Devices implanted for more than 1 month with structural analysis are included in this article. Explant results were analyzed in relation to cause of explantation and pre-explant evidence of endoleak, enlargement, or device migration.ResultsOne hundred twenty explanted stent grafts, including 37 from the US clinical trial, were analyzed. Mean implant duration was 22 ± 13 months (range, 1-61 months). Structural abnormalities included stent fatigue fractures, fabric abrasion holes, and suture breaks. The mean number of nitinol stent strut fractures per explanted device was 3 ± 4, which represents less than 0.2% of the total number of stent struts in each device. The mean number of fabric holes per explanted device was 2 ± 3, with a median hole size of 0.5 mm2. Suture breaks were seen in most explanted devices, but composed less than 1.5% of the total number of sutures per device. “For cause” explants (n = 104) had a 10-month longer implant duration (P = .007) compared with “incidental” explants (n = 16). “For cause” explants had more fractures (3 ± 5; P = .005) and fabric holes (2 ± 3; P = .008) per device compared with “incidental” explants, but these differences were not significant (P = .3) when adjusted for duration of device implantation. Among clinical trial explants the number of fabric holes in grafts in patients with endoleak (2 ± 3 per device) was no different from those without endoleak (3 ± 4 per device; P = NS). The number of fatigue fractures or fabric holes was no different in grafts in clinical trial patients with pre-explant aneurysm enlargement compared with those without enlargement. Pre-explant stent-graft migration was associated with a greater number of stent strut fractures (5 ± 7 per device; P = .04) and fabric holes (3 ± 3 per bifurcation; P = .03) compared with explants without migration. Serial imaging studies revealed inadequate proximal, distal, or junctional device fixation as the probable cause of rupture or need for conversion to open surgery in 86% of “for cause” explants. Structural device abnormalities were usually remote from fixation sites, and no causal relationship between device findings and clinical outcome could be established.ConclusionsNitinol stent fatigue fractures, fabric holes, and suture breaks found in explanted AneuRx stent grafts do not appear to be related to clinical outcome measures. Longer term studies are needed to confirm these observations
"Nutraceuticals" in relation to human skeletal muscle and exercise.
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine
Inhaled Nitric Oxide as an Adjunctive Treatment for Cerebral Malaria in Children: A Phase II Randomized Open-Label Clinical Trial
Background. Children with cerebral malaria (CM) have high rates of mortality and neurologic sequelae. Nitric oxide (NO) metabolite levels in plasma and urine are reduced in CM.
Methods. This randomized trial assessed the efficacy of inhaled NO versus nitrogen (N2) as an adjunctive treatment for CM patients receiving intravenous artesunate.We hypothesized that patients treated with NO would have a greater increase of the malaria biomarker, plasma angiopoietin-1 (Ang-1) after 48 hours of treatment.
Results. Ninety-two children with CM were randomized to receive either inhaled 80 part per million NO or N2 for 48 or more hours. Plasma Ang-1 levels increased in both treatment groups, but there was no difference between the groups at 48 hours (P = not significant [NS]). Plasma Ang-2 and cytokine levels (tumor necrosis factor-α, interferon- γ, interleukin [IL]-1β, IL-6, IL-10, and monocyte chemoattractant protein-1) decreased between inclusion and 48 hours in both treatment groups, but there was no difference between the groups (P = NS). Nitric oxide metabolite levels—blood methemoglobin and plasma nitrate—increased in patients treated with NO (both P \u3c .05). Seven patients in the N2 group and 4 patients in the NO group died. Five patients in the N2 group and 6 in the NO group had neurological sequelae at hospital discharge.
Conclusions. Breathing NO as an adjunctive treatment for CM for a minimum of 48 hours was safe, increased blood methemoglobin and plasma nitrate levels, but did not result in a greater increase of plasma Ang-1 levels at 48 hours
Recommended from our members
Increased Cardiac Myocyte PDE5 Levels in Human and Murine Pressure Overload Hypertrophy Contribute to Adverse LV Remodeling
Background: The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings: In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro. Conclusions/Significance: Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target
Recommended from our members
Novel MicroRNA Regulators of Atrial Natriuretic Peptide Production
Atrial natriuretic peptide (ANP) has a central role in regulating blood pressure in humans. Recently, microRNA 425 (miR-425) was found to regulate ANP production by binding to the mRNA of NPPA, the gene encoding ANP. mRNAs typically contain multiple predicted microRNA (miRNA)-binding sites, and binding of different miRNAs may independently or coordinately regulate the expression of any given mRNA. We used a multifaceted screening strategy that integrates bioinformatics, next-generation sequencing data, human genetic association data, and cellular models to identify additional functional NPPA-targeting miRNAs. Two novel miRNAs, miR-155 and miR-105, were found to modulate ANP production in human cardiomyocytes and target genetic variants whose minor alleles are associated with higher human plasma ANP levels. Both miR-15 and miR-105 repressed NPPA mRNA in an allele-specific manner, with the minor allele of each respective variant conferrin resistance to the miRNA either by disruption of miRNA base pairing or by creation of wobble base pairing. Moreover, miR-15 enhanced the repressive effects of miR-425 on ANP production in human cardiomyocytes. Our study combines computational genomic, and cellular tools to identify novel miRNA regulators of ANP production that could be targeted to raise ANP levels which may have applications for the treatment of hypertension or heart failure
Recommended from our members
Soluble Guanylate Cyclase α1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase –deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the and subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG
Recommended from our members
Atrial natriuretic peptide is negatively regulated by microRNA-425
Numerous common genetic variants have been linked to blood pressure, but no underlying mechanism has been elucidated. Population studies have revealed that the variant rs5068 (A/G) in the 3′ untranslated region of NPPA, the gene encoding atrial natriuretic peptide (ANP), is associated with blood pressure. We selected individuals on the basis of rs5068 genotype (AG vs. AA) and fed them a low- or high-salt diet for 1 week, after which they were challenged with an intravenous saline infusion. On both diets, before and after saline administration, ANP levels were up to 50% higher in AG individuals than in AA individuals, a difference comparable to the changes induced by high-salt diet or saline infusion. In contrast, B-type natriuretic peptide levels did not differ by rs5068 genotype. We identified a microRNA, miR-425, that is expressed in human atria and ventricles and is predicted to bind the sequence spanning rs5068 for the A, but not the G, allele. miR-425 silenced NPPA mRNA in an allele-specific manner, with the G allele conferring resistance to miR-425. This study identifies miR-425 as a regulator of ANP production, raising the possibility that miR-425 antagonists could be used to treat disorders of salt overload, including hypertension and heart failure
Pharmacogenomics of statin-related myopathy:Meta-analysis of rare variants from whole-exome sequencing
AIMS:Statin-related myopathy (SRM), which includes rhabdomyolysis, is an uncommon but important adverse drug reaction because the number of people prescribed statins world-wide is large. Previous association studies of common genetic variants have had limited success in identifying a genetic basis for this adverse drug reaction. We conducted a multi-site whole-exome sequencing study to investigate whether rare coding variants confer an increased risk of SRM. METHODS AND RESULTS:SRM 3-5 cases (N = 505) and statin treatment-tolerant controls (N = 2047) were recruited from multiple sites in North America and Europe. SRM 3-5 was defined as symptoms consistent with muscle injury and an elevated creatine phosphokinase level >4 times upper limit of normal without another likely cause of muscle injury. Whole-exome sequencing and variant calling was coordinated from two analysis centres, and results of single-variant and gene-based burden tests were meta-analysed. No genome-wide significant associations were identified. Given the large number of cases, we had 80% power to identify a variant with minor allele frequency of 0.01 that increases the risk of SRM 6-fold at genome-wide significance. CONCLUSIONS:In this large whole-exome sequencing study of severe statin-related muscle injury conducted to date, we did not find evidence that rare coding variants are responsible for this adverse drug reaction. Larger sample sizes would be required to identify rare variants with small effects, but it is unclear whether such findings would be clinically actionable
Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China
For the past two decades, China has experienced strong, continuous economic growth. At the same time, the number of motor vehicles in China has rapidly increased. As a direct result of such a phenomenon, China has been registering significant increases in air pollution. In spite of recent advances in air pollution control, it remains a serious problem for Chinas major cities, and constitutes an important issue in the agenda of its policy makers. The object of this paper is to explore the use of cost-benefit analysis (CBA) to evaluate and rank alternative policy scenarios regarding the control of air pollution emitted by motor vehicles. The empirical analysis carried out relates specifically to the Chinese context, over a twenty year period, from 2001 to 2020, and focuses on emission changes of the following three principal pollutants: CO, HC and NOx
- …