176 research outputs found

    Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    Full text link
    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of 92^{92}Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91^{91}Nb(p,γ)92(p,{\gamma})^{92}Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92^{92}Mo. Based on our results, we conclude that the 92^{92}Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.Comment: Submitted to PR

    Level densities and thermodynamical properties of Pt and Au isotopes

    Full text link
    The nuclear level densities of 194196^{194-196}Pt and 197,198^{197,198}Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess ΔS=1.9\Delta S=1.9 and 1.11.1 kBk_B is observed in 195^{195}Pt and 198^{198}Au with respect to 196^{196}Pt and 197^{197}Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve

    Deformation of the Magnetic Skyrmion Lattice in MnSi under Electric Current Flow

    Full text link
    Using small-angle neutron scattering (SANS), we investigate the deformation of the magnetic skyrmion lattice in bulk single-crystalline MnSi under electric current flow. A significant broadening of the skyrmion-lattice-reflection peaks was observed in the SANS pattern for current densities greater than a threshold value j_t ~ 1 MA/m^2 (10^6 A/m^2). We show this peak broadening to originate from a spatially inhomogeneous rotation of the skyrmion lattice, with an inverse rotation sense observed for opposite sample edges aligned with the direction of current flow. The peak broadening (and the corresponding skyrmion lattice rotations) remain finite even after switching off the electric current. These results indicate that skyrmion lattices under current flow experience significant friction near the sample edges, and plastic deformation due to pinning effects, these being important factors that must be considered for the anticipated skyrmion-based applications in chiral magnets at the nanoscale

    Relative \u3csup\u3e235\u3c/sup\u3eU(\u3cem\u3en,γ\u3c/em\u3e) and (\u3cem\u3en,f\u3c/em\u3e) Cross Sections From \u3csup\u3e235\u3c/sup\u3eU(\u3cem\u3ed,pγ\u3c/em\u3e) and (\u3cem\u3ed,pf\u3c/em\u3e)

    Get PDF
    The internal surrogate ratio method allows for the determination of an unknown cross section, such as (n,γ), relative to a better-known cross section, such as (n,f), by measuring the relative exit-channel probabilities of a surrogate reaction that proceeds through the same compound nucleus. The validity of the internal surrogate ratio method is tested by comparing the relative γ and fission exit-channel probabilities of a 236U∗ compound nucleus, formed in the 235U(d,p) reaction, to the known 235U(n,γ) and (n,f) cross sections. A model-independent method for measuring the γ-channel yield is presented and used

    γ-ray decay from neutron-bound and unbound states in Mo 95 and a novel technique for spin determination

    Get PDF
    The emission of γ rays from neutron-bound and neutron-unbound states in Mo95, populated in the Mo94(d,p) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-γ and p-γ-γ coincidences, the Mo95 level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p-γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levels with high spins populated in the (d,p) reaction above the neutron separation energy. Spins for almost all Mo95 levels below 2 MeV (and for a few levels above) have been determined with this method

    Multi-quasiparticle States in \u3csup\u3e256\u3c/sup\u3eRf

    Get PDF
    Excited states in 256Rf were populated via the 208Pb(50Ti,2n) fusion–evaporation reaction. Delayed γ-ray and electron decay spectroscopy was performed and three isomeric states in 256Rf have been identified. A fourth low-energy nonyrast state was identified from the γ-ray decay of one of the higher lying isomers. The states are interpreted as multi-quasiparticle excitations

    Particle-γ Spectroscopy of the (p,d-γ)\u3csup\u3e155\u3c/sup\u3eGd Reaction: Neutron Single-quasiparticle States at N=91

    Get PDF
    A segmented Si telescope and HPGe array is used to study the 156Gd(p,d-γ)155Gd direct reaction by d-γ and d-γ-γ coincidence measurements using 25-MeV protons. The present investigation is the first time that this N = 91 nucleus and the N = 90 region—which is known for a rapid change from vibrational to rotational character, several low-lying 0+ states in the even-even nuclei, and large Coriolis (ΔΩ = 1) plus ΔN = 2 mixing in the even-odd nuclei—have been studied by particle-γ coincidence following a direct reaction with light ions. Gamma-ray energies and branches, excitation energies, angular distributions, and cross sections are measured for states directly populated in the (p,d) reaction. A new low-energy doublet state at 592.46 keV (previously associated with the K = 0⊗3−/2 [521] bandhead) and several new γ-ray transitions (particularly for states with excitation energies \u3e1 MeV) are presented. Most notably, the previous v 7+/2[404] systematics at and around the N = 90 transition region are brought into question and reassigned as ν 5+/2[402]. This reassignment makes the ν 1+/2[400], ν 3+/2[402], and ν 5+/2[402] orbitals, which originate from the 3s1/2, 2d3/2, and 2d5/2 spherical states, respectively, responsible for the three largest cross sections to positive-parity states in the (p,d)155Gd direct reaction. These three steeply upsloping orbitals undergo ΔN = 2 mixing with their N = 6 orbital partners, which are oppositely sloped with respect to deformation. The presence of these steeply sloped and crossing orbitals near the Fermi surface could weaken the monopole pairing strength and increase the quadrupole pairing strength of neighboring even-even nuclei, which would bring ν 2p-2h 0+ states below 2Δ. Indeed, this could account for a large number of the low-lying 0+ states populated in the (p,t)154Gd direct reaction
    corecore