515 research outputs found

    The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    Get PDF
    Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry

    The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    Get PDF
    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics

    Exosomal Hsp70 Induces a Pro-Inflammatory Response to Foreign Particles Including Mycobacteria

    Get PDF
    © 2010 Anand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Exosomes are endosome-derived vesicles that are released when multi-vesicular bodies (MVBs) fuse with the plasma membrane. Exosomes released from mycobacteria-infected cells have recently been shown to be pro-inflammatory. A prominent host molecule that is found within these exosomes is Hsp70, a member of the heat-shock family of proteins. Methodology/Principal Findings: We first characterized the exosomes purified from control and mycobacteria-infected cells. We found that relative to uninfected cells, macrophages infected with M. smegmatis and M. avium release more exosomes and the exosomes they released had more Hsp70 on their surface. Both exosomes and exogenous Hsp70 treatment of macrophages led to NF-kB activation and TNFa release in uninfected macrophages; Hsp70 levels were elevated in mycobacteria-infected cells. Macrophage treatment with Hsp70 also led to increase in the phagocytosis and maturation of latex-bead phagosomes. Finally, Hsp70 pre-incubation of M. smegmatis- and M. avium-infected cells led to increased phago-lysosome fusion, as well as more killing of mycobacteria within macrophages. Conclusions/Significance: Our results fit into an emerging concept whereby exosomes-containing Hsp70 are effective inducers of inflammation, also in response to mycobacterial infection.E.A. was supported by Fundação para a Ciência e a Tecnologia (FCT) Grant PIC/IC/82859/2007 and PTDC/SAU-MII/098024/2008. P.K.A was supported by a post-doctoral research grant from Alexander von Humboldt foundation, Germany and Marie-Curie fellowship from European Union, FP6 programme MIF1-CT- 2006-039351. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Autoantibodies to aS1-Casein Are Induced by Breast-Feeding

    Full text link
    Background: The generation of antibodies is impaired in newborns due to an immature immune system and reduced exposure to pathogens due to maternally derived antibodies and placental functions. During nursing, the immune system of newborns is challenged with multiple milk-derived proteins. Amongst them, caseins are the main constituent. In particular, human aS1-casein (CSN1S1) was recently shown to possess immunomodulatory properties. We were thus interested to determine if auto-antibodies to CSN1S1 are induced by breast-feeding and may be sustained into adulthood. Methods: 62 sera of healthy adult individuals who were (n = 37) or were not (n = 25) breast-fed against human CSN1S1 were investigated by a new SD (surface display)-ELISA. For cross-checking, these sera were tested for anti Epstein-Barr virus (EBV) antibodies by a commercial ELISA. Results: IgG-antibodies were predominantly detected in individuals who had been nursed. At a cut-off value of 0.4, the SDELISA identified individuals with a history of having been breast-fed with a sensitivity of 80% and a specificity of 92%. Under these conditions, 35 out of 37 sera from healthy donors, who where breast-fed, reacted positively but only 5 sera of the 25 donors who were not breast-fed. The duration of breast-feeding was of no consequence to the antibody reaction as some healthy donors were only short term breast-fed (5 days minimum until 6 weeks maximum), but exhibited significant serum reaction against human CSN1S1 nonetheless. Conclusion: We postulate that human CSN1S1 is an autoantigen. The antigenicity is orally determined, caused by breastfeeding, and sustained into adulthood

    Contacting domains segregate a lipid transporter from a solute transporter in the malarial host–parasite interface

    Get PDF
    While membrane contact sites between intracellular organelles are abundant, little is known about the contacts between membranes that delimit extracellular junctions within cells, such as intracellular parasites. Here authors demonstrate the segregation of a lipid transporter from a solute transporter in the malarial host-parasite interface

    The role of AmeloD in tooth development

    Get PDF
    The development of ectodermal organs, such as teeth, requires epithelial–mesenchymal interactions. Basic helix–loop–helix (bHLH) transcription factors regulate various aspects of tissue development, and we have previously identified a bHLH transcription factor, AmeloD, from a tooth germ cDNA library. Here, we provide both in vitro and in vivo evidence that AmeloD is important in tooth development. We created AmeloD-knockout (KO) mice to identify the in vivo functions of AmeloD that are critical for tooth morphogenesis. We found that AmeloD-KO mice developed enamel hypoplasia and small teeth because of increased expression of E-cadherin in inner enamel epithelial (IEE) cells, and it may cause inhibition of the cell migration. We used the CLDE dental epithelial cell line to conduct further mechanistic analyses to determine whether AmeloD overexpression in CLDE cells suppresses E-cadherin expression and promotes cell migration. Knockout of epiprofin (Epfn), another transcription factor required for tooth morphogenesis and development, and analysis of AmeloD expression and deletion revealed that AmeloD also contributed to multiple tooth formation in Epfn-KO mice by promoting the invasion of dental epithelial cells into the mesenchymal region. Thus, AmeloD appears to play an important role in tooth morphogenesis by modulating E-cadherin and dental epithelial–mesenchymal interactions. These findings provide detailed insights into the mechanism of ectodermal organ development

    Cold event in the South Atlantic Bight during summer of 2003 : model simulations and implications

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05022, doi:10.1029/2006JC003903.A set of model simulations are used to determine the principal forcing mechanisms that resulted in anomalously cold water in the South Atlantic Bight (SAB) in the summer of 2003. Updated mass field and elevation boundary conditions from basin-scale Hybrid Coordinate Ocean Model (HYCOM) simulations are compared to climatological forcing to provide offshore and upstream influences in a one-way nesting sense. Model skill is evaluated by comparing model results with observations of velocity, water level, and surface and bottom temperature. Inclusion of realistic atmospheric forcing, river discharge, and improved model dynamics produced good skill on the inner shelf and midshelf. The intrusion of cold water onto the shelf occurred predominantly along the shelf-break associated with onshore flow in the southern part of the domain north of Cape Canaveral (29° to 31.5°). The atmospheric forcing (anomalously strong and persistent upwelling-favorable winds) was the principal mechanism driving the cold event. Elevated river discharge increased the level of stratification across the inner shelf and midshelf and contributed to additional input of cold water into the shelf. The resulting pool of anomalously cold water constituted more than 50% of the water on the shelf in late July and early August. The excess nutrient flux onto the shelf associated with the upwelling was approximated using published nitrate-temperature proxies, suggesting increased primary production during the summer over most of the SAB shelf.The preparation of this paper was primarily supported by the Southeast Atlantic Coastal Ocean Observing System (SEACOOS) and the South Atlantic Bight Limited Area Model (SABLAM). SEACOOS is a collaborative, regional program sponsored by the Office of Naval Research under award N00014-02-1-0972 and managed by the University of North Carolina-General Administration. SABLAM was sponsored by the National Ocean Partnership Program (award NAG 13-00041). Data from ship surveys were collected and processed with the support from NSF grant OCE-0099167 (J. R. Nelson), NSF grant OCE-9982133 (J. O. Blanton, SkIO), NASA grant NAG-10557 (J. R. Nelson), and SEACOOS. NOAA NDBC buoy data and NOS coastal water level records were obtained through NOAA-supported data archives and web portals. Moored instrument data from the Carolina Coastal Ocean Observation and Prediction System (Caro-COOPS) were acquired from the system’s website (http://www.carocoops.org). Caro-COOPS is sponsored by NOAA grant NA16RP2543
    • …
    corecore