300 research outputs found

    New vacuum techniques for small aperture proton storage rings

    Get PDF

    Aircraft-based observations and high-resolution simulations of an Icelandic dust storm

    Get PDF
    The first aircraft-based observations of an Icelandic dust storm are presented. The measurements were carried out over the ocean near Iceland's south coast in February 2007. This dust event occurred in conjunction with an easterly barrier jet of more than 30 m s<sup>−1</sup>. The aircraft measurements show high particle mass mixing ratios in an area of low wind speeds in the wake of Iceland near the coast, decreasing abruptly towards the jet. Simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF/Chem) indicate that the measured high mass mixing ratios and observed low visibility inside the wake are due to dust transported from Icelandic sand fields towards the ocean. This is confirmed by meteorological station data. Glacial outwash terrains located near the Mýrdalsjökull glacier are among simulated dust sources. Sea salt aerosols produced by the impact of strong winds on the ocean surface started to dominate as the aircraft flew away from Iceland into the jet. The present results support recent studies which suggest that Icelandic deserts should be considered as important dust sources in global and regional climate models

    A case study of a transported bromine explosion event in the Canadian high arctic

    Get PDF
    Ozone depletion events in the polar troposphere have been linked to extremely high concentrations of bromine, known as bromine explosion events (BEE). However, the optimum meteorological conditions for the occurrence of these events remain uncertain. On 4–5 April 2011, a combination of both blowing snow and a stable shallow boundary layer was observed during a BEE at Eureka, Canada (86.4°W, 80.1°N). Measurements made by a Multi-Axis Differential Optical Absorption Spectroscopy spectrometer were used to retrieve BrO profiles and partial columns. During this event, the near-surface BrO volume mixing ratio increased to ~20 parts per trillion by volume, while ozone was depleted to ~1 ppbv from the surface to 700 m. Back trajectories and Global Ozone Monitoring Experiment-2 satellite tropospheric BrO columns confirmed that this event originated from a bromine explosion over the Beaufort Sea. From 30 to 31 March, meteorological data showed high wind speeds (24 m/s) and elevated boundary layer heights (~800 m) over the Beaufort Sea. Long-distance transportation (~1800 km over 5 days) to Eureka indicated strong recycling of BrO within the bromine plume. This event was generally captured by a global chemistry-climate model when a sea-salt bromine source from blowing snow was included. A model sensitivity study indicated that the surface BrO at Eureka was controlled by both local photochemistry and boundary layer dynamics. Comparison of the model results with both ground-based and satellite measurements confirmed that the BEE observed at Eureka was triggered by transport of enhanced BrO from the Beaufort Sea followed by local production/recycling under stable atmospheric shallow boundary layer conditions

    First high-resolution BrO column retrievals from TROPOMI

    Get PDF
    For more than 2 decades, satellite observations from instruments such as GOME, SCIAMACHY, GOME-2, and OMI have been used for the monitoring of bromine monoxide (BrO) distributions on global and regional scales. In October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) was launched on board the Copernicus Sentinel-5 Precursor platform with the goal of continuous daily global trace gas observations with unprecedented spatial resolution. In this study, sensitivity tests were performed to find an optimal wavelength range for TROPOMI BrO retrievals under various measurement conditions. From these sensitivity tests, a wavelength range for TROPOMI BrO retrievals was determined and global data for April 2018 as well as for several case studies were retrieved. Comparison with GOME-2 and OMI BrO retrievals shows good consistency and low scatter of the columns. The examples of individual TROPOMI overpasses show that due to the better signal-to-noise ratio and finer spatial resolution of 3.5×7&thinsp;km2, TROPOMI BrO retrievals provide good data quality with low fitting errors and unique information on small-scale variabilities in various BrO source regions such as Arctic sea ice, salt marshes, and volcanoes.</p

    Comprehensive evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis against independent observations: Reactive gases

    Get PDF
    The Copernicus Atmosphere Monitoring Service (CAMS) is operationally providing forecast and reanalysis products of air quality and atmospheric composition. In this article, we present an extended evaluation of the CAMS global reanalysis data set of four reactive gases, namely, ozone (O-3), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO), using multiple independent observations. Our results show that the CAMS model system mostly provides a stable and accurate representation of the global distribution of reactive gases over time. Our findings highlight the crucial impact of satellite data assimilation and emissions, investigated through comparison with a model run without assimilated data. Stratospheric and tropospheric O-3 are mostly well constrained by the data assimilation, except over Antarctica after 2012/2013 due to changes in the assimilated data. Challenges remain for O-3 in the Tropics and high-latitude regions during winter and spring. At the surface and for short-lived species (NO2), data assimilation is less effective. Total column CO in the CAMS reanalysis is well constrained by the assimilated satellite data. The control run, however, shows large overestimations of total column CO in the Southern Hemisphere and larger year-to-year variability in all regions. Concerning the long-term stability of the CAMS model, we note drifts in the time series of biases for surface O-3 and CO in the Northern midlatitudes and Tropics and for NO2 over East Asia, which point to biased emissions. Compared to the previous Monitoring Atmospheric Composition and Climate reanalysis, changes in the CAMS chemistry module and assimilation system helped to reduce biases and enhance the long-term temporal consistency of model results for the CAMS reanalysis

    Seasonality of halogen deposition in polar snow and ice

    Get PDF
    Abstract. The atmospheric chemistry of iodine and bromine in Polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine emission is attributed to biological communities in the open ocean and hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial–interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arctic and better understand potential links to sea ice. We find that bromine and iodine concentrations and Br enrichment (relative to sea salt content) in polar ice do vary seasonally in Arctic snow and Antarctic ice. Although seasonal variability in halogen emission sources is recorded by satellite-based observations of tropospheric halogen concentrations, seasonal patterns observed in snowpack are likely also influenced by photolysis-driven processes. Peaks of bromine concentration and Br enrichment in Arctic snow and Antarctic ice occur in spring and summer, when sunlight is present. A secondary bromine peak, observed at the end of summer, is attributed to bromine deposition at the end of the polar day. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions. These findings support previous observations of iodine peaks in winter snow strata attributed to the absence of sunlight-driven photolytic re-mobilisation of iodine from surface snow. Further investigation is required to confirm these proposed mechanisms explaining observations of halogens in polar snow and ice, and to evaluate the extent to which halogens may be applied as sea ice proxies
    • …
    corecore