2,189 research outputs found

    Nanocrystalline tin dioxide thin films as oxidizing gas sensor

    Get PDF
    Nanocrystalline tin dioxide has been employed to develop two types of sensor devices. Two electrical properties, resistivity and work function, increase with oxidizing gas adsorption. The first leads to the classical thin film resistive sensor. The other property is used to design a switching diode. Both devices show a ligh sensitivity and linearity under proper design and operating parameters. Typival figures are 100% resistance change and 50 mV voltage shift for 50 ppb of NO₂ in air. A theoretical model is proposed to explain the results

    ¿Cuál es el perfil de los futuros profesores de matemáticas en educación secundaria?

    Get PDF
    En este póster se presenta un análisis de los programas de formación inicial docente de matemáticas en Educación Secundaria, con el objetivo de conocer el perfil profesional de los estudiantes del Máster en Formación del Profesorado (MFP) a partir de las titulaciones que dan acceso al mismo y de las condiciones de entrada a los diferentes programas en las distintas universidades españolas

    Aplicaciones de machine learning para el uso sustentable de recursos naturales

    Get PDF
    Se propone una investigación para predecir la ocurrencia de incendios forestales basada en el entrenamiento de Modelos de Machine Learning. Se utiliza para el entrenamiento de los modelos, datos de registros históricos provistos por las propias Asociaciones de Bomberos Voluntarios, datos del Servicio Meteorológico Nacional (SMN) e imágenes satelitales provistas por la NASA. Se propone extender la solución para abarcar el monitoreo de áreas en riesgo, mediante dispositivos de IoT en puntos fijos o móviles, y equipados con sensores y cámaras. El procesamiento de las imágenes se propone realizar mediante algoritmos de reconocimiento de imágenes para enviar alertas de posibles focos de incendios.Red de Universidades con Carreras en Informátic

    A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats

    Get PDF
    ABSTRACT Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log 10 total PFU and 2.7 log 10 PFU/g of tissue, respectively, compared to those in unvaccinated animals ( P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by incorporating a low-fusion, subgroup B F protein in the genetic background of codon-deoptimized nonstructural protein genes and a deleted small hydrophobic protein gene. The resultant vaccine candidate, DB1, was attenuated, highly immunogenic, and protective against RSV challenge in cotton rats

    Environmental factors regulate soil microbial attributes and their response to drought in rangeland ecosystems

    Get PDF
    In ecosystems, soil microbial variables characterization are used to determine soil biological health and the response of soils to environmental stress. Although there are strong associations between plants and soil microorganisms, they may respond asynchronously to environmental factors and severe droughts. We aimed to: I) evaluate the special variation of soil microbiome such as microbial biomass carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR) and microbial indexes in eight rangeland sites located across an aridity gradient (distributed from arid to mesic climates); II) analyze the relative importance of main environmental factors (climate, soils, and plants) and their relationships with microbial variables in the rangelands; and III) assess the effect of drought on microbial and plant variables in field-based manipulative experiments. First, we found significant changes of microbial variables along a precipitation and temperature gradient. The responses of MBC and MBN were strongly dependent on soil pH, soil nitrogen (N), soil organic carbon (SOC), C:N ratio and vegetation cover. In contrast, SBR was influenced by the aridity index (AI), the mean annual precipitation (MAP), the soil pH and vegetation cover. MBC, MBN and SBR were negatively related with soil pH compared to the other factors (C, N, C:N, vegetation cover, MAP and AI) that had a positive relationship. Second, we found a stronger soil microbial variables response to drought in arid sites compared to humid rangelands. Third, the responses of MBC, MBN, and SBR to drought showed positive relationships with vegetation cover and aboveground biomass, but with different regression slopes, this suggest that plant and microbial communities responded differently to drought. The results from this study improve our understanding about the microbial response to drought in different rangelands, and may facilitate the development of predictive models on responses of soil microorganisms in carbon cycle under global change scenarios.Fil: Toledo, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; ArgentinaFil: Bondaruk, Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Oñatibia, Gastón Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Loydi, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Bruschetti, Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Pascual, Jesus Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Peter, Guadalupe. Universidad Nacional de Río Negro. Sede Atlántica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Agüero, Walter D.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Catamarca-La Rioja. Estación Experimental Agropecuaria La Rioja; ArgentinaFil: Namur, Pedro R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Catamarca-La Rioja. Estación Experimental Agropecuaria La Rioja; ArgentinaFil: Blanco, Lisandro Javier. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Catamarca-La Rioja. Estación Experimental Agropecuaria La Rioja; ArgentinaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentin

    Monozygotic twins concordant for common variable immunodeficiency : strikingly similar clinical and immune profile associated with a polygenic burden

    Get PDF
    Copyright © 2019 Silva, Fonseca, Pereira, Silva, Barbosa, Serra-Caetano, Blanco, Rosmaninho, Pérez-Andrés, Sousa, Raposo, Gama-Carvalho, Victorino, Hammarstrom and Sousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Monozygotic twins provide a unique opportunity to better understand complex genetic diseases and the relative contribution of heritable factors in shaping the immune system throughout life. Common Variable Immunodeficiency Disorders (CVID) are primary antibody defects displaying wide phenotypic and genetic heterogeneity, with monogenic transmission accounting for only a minority of the cases. Here, we report a pair of monozygotic twins concordant for CVID without a family history of primary immunodeficiency. They featured a remarkably similar profile of clinical manifestations and immunological alterations at diagnosis (established at age 37) and along the subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to identify a monogenic cause for CVID, but unraveled a combination of heterozygous variants, with a predicted deleterious impact. These variants were found in genes involved in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3. The potential for combinatorial effects translating into the observed disease phenotype is inferred from their roles in immune pathways, namely in T and B cell activation. The combination of these genetic variants is also likely to impose a significant constraint on environmental influences, resulting in a similar immunological phenotype in both twins, despite exposure to different living conditions. Overall, these cases stress the importance of integrating NGS data with clinical and immunological phenotypes at the single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand the complex genetic landscape underlying the vast majority of patients with CVID, as well as those with other immunodeficiencies.This work received funding from PAC - PRECISE - LISBOA-01-0145-FEDER-016394, co-funded by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa PORTUGAL 2020 and Fundação para a Ciência e a Tecnologia; and UID/BIM/50005/2019, project funded by Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through Fundos do Orçamento de Estado. Work in MG-C lab is supported by UID/MULTI/04046/2019 Research Unit grant from FCT, Portugal (to BioISI) and FCT research grant PTDC/BIA-CEL/29257/2017.info:eu-repo/semantics/publishedVersio

    A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation

    Get PDF
    Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats

    Host adaptive immunity deficiency in severe pandemic influenza

    Get PDF
    INTRODUCTION: Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. METHODS: We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1. RESULTS: The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum. CONCLUSIONS: Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release. Interruption of this deleterious cycle may improve disease outcome.The study was scientifically sponsored by the Spanish Society for Critical Care Medicine (SEMICYUC). Funding: MICCIN-FIS/JCYL-IECSCYL-SACYL (Spain): Programa de Investigación Comisionada en Gripe, GR09/0021-EMER07/050- PI081236-RD07/0067. CIHR-NIH-Sardinia Recherché-LKSF Canada support DJK.S
    corecore