51 research outputs found

    Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order

    Get PDF
    We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4]O[(Gm/rc2)2]O[(v/c)^4] \sim O[(Gm/rc^2)^2]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild spacetime, despite having been derived using flat spacetime wave equations. The method cures defects that plagued previous ``brute- force'' slow-motion approaches to the generation of gravitational radiation, and yields results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian method. We display explicit formulae for the gravitational waveform and the energy flux for two-body systems, both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite spatial extent, and derive the spin corrections to the waveform and energy loss.Comment: 59 pages ReVTeX; Physical Review D, in press; figures available on request to [email protected]

    Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order

    Get PDF
    The two independent ``plus" and ``cross" polarization waveforms associated with the gravitational waves emitted by inspiralling, non-spinning, compact binaries are presented, ready for use in the data analysis of signals received by future laser interferometer gravitational-wave detectors such as LIGO and VIRGO. The computation is based on a recently derived expression of the gravitational field at the second-post-Newtonian approximation of general relativity beyond the dominant (Newtonian) quadrupolar field. The use of these theoretical waveforms to make measurements of astrophysical parameters and to test the nature of relativistic gravity is discussed.Comment: 17 pages; To appear in Classical and Quantum Gravit

    Simplified models of electromagnetic and gravitational radiation damping

    Get PDF
    In previous work the authors analysed the global properties of an approximate model of radiation damping for charged particles. This work is put into context and related to the original motivation of understanding approximations used in the study of gravitational radiation damping. It is examined to what extent the results obtained previously depend on the particular model chosen. Comparisons are made with other models for gravitational and electromagnetic fields. The relation of the kinetic model for which theorems were proved to certain many-particle models with radiation damping is exhibited

    Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects and the Neutron-Star Equation of State

    Get PDF
    We study how the neutron-star equation of state affects the onset of the dynamical instability in the equations of motion for inspiraling neutron-star binaries near coalescence. A combination of relativistic effects and Newtonian tidal effects cause the stars to begin their final, rapid, and dynamically-unstable plunge to merger when the stars are still well separated and the orbital frequency is \approx 500 cycles/sec (i.e. the gravitational wave frequency is approximately 1000 Hz). The orbital frequency at which the dynamical instability occurs (i.e. the orbital frequency at the innermost stable circular orbit) shows modest sensitivity to the neutron-star equation of state (particularly the mass-radius ratio, M/RoM/R_o, of the stars). This suggests that information about the equation of state of nuclear matter is encoded in the gravitational waves emitted just prior to the merger.Comment: RevTeX, to appear in PRD, 8 pages, 4 figures include

    “Du Carré Rouge aux Casseroles”: A Context for Youth-Adult Partnership in the Québec Student Movement

    Get PDF
    This article utilizes duoethnography, a collaborative research methodology, to examine the divergent experiences of students and professors in the 2012 Québec student movement. Ignited by the government’s announcement of its intention to increase tuition fees, this youth-led movement caused an unprecedented stirring of ideas, emotions, and actions. Through personal narratives, we identify four aspects of a youth-led movement for social change, and reflect on their meaning in our lives in realizing youth-adult partnerships in the context of emancipatory approaches. They are: (a) the benefit of experiential versus classroom education; (b) the nurturing effect on youth empowerment of providing structures and spaces for youth-led processes; (c) the need to align youth emancipatory theory with practice, especially in systems which regularly resist change; and (d) the unexpectedly powerful impact of youth stereotypes, especially those delivered through mainstream media, and the difficulty of overcoming them. We also identify the value of duoethnography to accentuate youth voices, strengthen adult-youth partnerships, and enrich the transformative learning of both youth and adults

    Changing fish distributions challenge the effective management of European fisheries.

    Get PDF
    Changes in fish distribution are being observed across the globe. In Europe's Common Fisheries Policy, the share of the catch of each fish stock is split among management areas using a fixed allocation key known as ‘Relative Stability’: in each management area, member states get the same proportion of the total catch each year. That proportion is largely based on catches made by those member states in the 1970s. Changes in distribution can, therefore, result in a mismatch between quota shares and regional abundances within management areas, with potential repercussions for the status of fish stocks and the fisheries that depend on them. Assessing distribution changes is crucial to ensure adequate management and sustainable exploitation of our fish resources. We analysed scientific survey data using a three‐tiered analytical approach to provide, for the first time, an overview of changes in distribution for 19 northeast Atlantic fish species encompassing 73 commercial stocks over 30 yr. All species have experienced changes in distribution, five of which did so across management areas. A cross‐species analysis suggested that shifts in areas of suitable thermal habitat, and density‐dependent use of these areas, are at least partly responsible for the observed changes. These findings challenge the current use of relative stability to allocate quotas.acceptedVersio

    Functional Hair Cell Mechanotransducer Channels Are Required for Aminoglycoside Ototoxicity

    Get PDF
    Aminoglycosides (AG) are commonly prescribed antibiotics with potent bactericidal activities. One main side effect is permanent sensorineural hearing loss, induced by selective inner ear sensory hair cell death. Much work has focused on AG's initiating cell death processes, however, fewer studies exist defining mechanisms of AG uptake by hair cells. The current study investigated two proposed mechanisms of AG transport in mammalian hair cells: mechanotransducer (MET) channels and endocytosis. To study these two mechanisms, rat cochlear explants were cultured as whole organs in gentamicin-containing media. Two-photon imaging of Texas Red conjugated gentamicin (GTTR) uptake into live hair cells was rapid and selective. Hypocalcemia, which increases the open probability of MET channels, increased AG entry into hair cells. Three blockers of MET channels (curare, quinine, and amiloride) significantly reduced GTTR uptake, whereas the endocytosis inhibitor concanavalin A did not. Dynosore quenched the fluorescence of GTTR and could not be tested. Pharmacologic blockade of MET channels with curare or quinine, but not concanavalin A or dynosore, prevented hair cell loss when challenged with gentamicin for up to 96 hours. Taken together, data indicate that the patency of MET channels mediated AG entry into hair cells and its toxicity. Results suggest that limiting permeation of AGs through MET channel or preventing their entry into endolymph are potential therapeutic targets for preventing hair cell death and hearing loss

    Modeling causes of death: an integrated approach using CODEm

    Get PDF
    Background: Data on causes of death by age and sex are a critical input into health decision-making. Priority setting in public health should be informed not only by the current magnitude of health problems but by trends in them. However, cause of death data are often not available or are subject to substantial problems of comparability. We propose five general principles for cause of death model development, validation, and reporting.Methods: We detail a specific implementation of these principles that is embodied in an analytical tool - the Cause of Death Ensemble model (CODEm) - which explores a large variety of possible models to estimate trends in causes of death. Possible models are identified using a covariate selection algorithm that yields many plausible combinations of covariates, which are then run through four model classes. The model classes include mixed effects linear models and spatial-temporal Gaussian Process Regression models for cause fractions and death rates. All models for each cause of death are then assessed using out-of-sample predictive validity and combined into an ensemble with optimal out-of-sample predictive performance.Results: Ensemble models for cause of death estimation outperform any single component model in tests of root mean square error, frequency of predicting correct temporal trends, and achieving 95% coverage of the prediction interval. We present detailed results for CODEm applied to maternal mortality and summary results for several other causes of death, including cardiovascular disease and several cancers.Conclusions: CODEm produces better estimates of cause of death trends than previous methods and is less susceptible to bias in model specification. We demonstrate the utility of CODEm for the estimation of several major causes of death
    corecore