33 research outputs found

    Multi-model assessment of the late-winter extra-tropical response to El Niño and La Nñna

    Get PDF
    El Ni˜no-Southern Oscillation (ENSO) is a natural phenomenon in the tropical Pacific and the dominant mode of climate variability on interannual timescales. The first term, El Ni˜no, refers to a recurring warming of the tropical Pacific Ocean (every 2-7 years), while the opposite phase, an anomalous cooling, is called La Ni˜na. These variations in sea surface temperature (SST) are accompanied by changes in the tropical atmospheric circulation (Southern Oscillation), thus making ENSO a coupled phenomenon involving ocean-atmosphere interactions. Furthermore, ENSO can affect climate in regions far from the tropical Pacific, producing a cascade of global impacts through so-called ‘teleconnections’. Understanding the extra-tropical impacts of ENSO is important to improve seasonal forecasts, for which it represents the most important source of predictability. In the North Atlantic-European (NAE) sector, the ENSO teleconnection is still controversial in several aspects. A first cornerstone was set in a review by Br¨onnimann (2007) [1], who concluded that a robust, ‘canonical’ ENSO signal exists over the NAE region in late winter (January to March, JFM): a dipole in sea-level pressure (SLP) with centers over the midlatitude and high-latitude North Atlantic. While Br¨onnimann described this pattern as “close to symmetric” for El Ni˜no and La Ni˜na, recent studies deliver contradictory results, with some reporting a symmetric signal (e.g. [2] [3] [4]) and others claiming asymmetry (e.g. [5] [6] [7]). The actual linearity of the ENSO-NAE teleconnection thus remains unresolved, and addressing this issue is the primary objective of this study. We will also investigate another key aspect of the ENSONAE teleconnection that is nothing but settled: the dynamical mechanism leading to the ‘canonical’ SLP dipole. The underlying idea of this study is to use idealized experiments with atmospheric models forced by symmetric anomalous SST patterns representing El Ni˜no and La Ni˜na to diagnose symmetries and asymmetries in the extra-tropical response. A multi-model approach is used, as the experiments analyzed here are run with the same protocol using three stateof- the-art models. We aim not only at diagnosing asymmetries in the extra-tropical ENSO-related SLP signal, but also at understanding their cause by examining all the steps involved in the atmospheric response, starting from the tropical Pacific

    The summer North Atlantic Oscillation in CMIP3 models and related uncertainties in projected summer drying in Europe

    Get PDF
    This paper discusses uncertainties in model projections of summer drying in the Euro-Mediterranean region related to errors and uncertainties in the simulation of the summer NAO (SNAO). The SNAO is the leading mode of summer SLP variability in the North Atlantic/European sector and modulates precipitation not only in the vicinity of the SLP dipole (northwest Europe) but also in the Mediterranean region. An analysis of CMIP3 models is conducted to determine the extent to which models reproduce the signature of the SNAO and its impact on precipitation and to assess the role of the SNAO in the projected precipitation reductions. Most models correctly simulate the spatial pattern of the SNAO and the dry anomalies in northwest Europe that accompany the positive phase. The models also capture the concurrent wet conditions in the Mediterranean, but the amplitude of this signal is too weak, especially in the east. This error is related to the poor simulation of the upper-level circulation response to a positive SNAO, namely the observed trough over the Balkans that creates potential instability and favors precipitation. The SNAO is generally projected to trend upwards in CMIP3 models, leading to a consistent signal of precipitation reduction in NW Europe, but the intensity of the trend varies greatly across models, resulting in large uncertainties in the magnitude of the projected drying. In the Mediterranean, because the simulated influence of the SNAO is too weak, no precipitation increase occurs even in the presence of a strong SNAO trend, reducing confidence in these projections

    Tropospheric pathways of the late-winter ENSO teleconnection to Europe

    Get PDF
    The late-winter signal associated with the El Niño-Southern Oscillation (ENSO) over the European continent is unsettled. Two main anomalous patterns of sea-level pressure (SLP) can be identified: a “wave-like” pattern with two opposite-signed anomalies over Europe, and a pattern showing a single anomaly (“semi-isolated”). In this work, potential paths of the tropospheric ENSO teleconnection to Europe and their role in favoring a more wave-like or semi-isolated pattern are explored. Outputs from historical runs of two versions of the MPI-ESM coupled model, which simulate these two types of patterns, are examined. A novel ray-tracing approach that accounts for zonal asymmetries in the background flow is used to test potential propagation paths in these simulations and in observations; three source regions are considered: the tropical Pacific, the North America/North Atlantic, and the tropical Atlantic. The semi-isolated pattern is suggested to be related to the well-known Rossby wave train emanating from the tropical Pacific, either via a split over northern North America or via reflection due to inhomogeneities in the background flow. The wave-like pattern, in turn, appears to be related to a secondary wave train emerging from the tropical Atlantic. The competition between these two pathways contributes to determining the actual surface response.B.M. and J.G.-S. were supported by the “Contratos Predoctorales para la Formación de Doctores” (BES-2016-076431) and “Ramón y Cajal” (RYC-2016-21181) programmes, respectively. Tercio Ambrizzi was supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014-1, 301397/2019-8; FAPESP Grants 2014/50848-9 and 2017/09659-6. This study also received funding from the Spanish ATLANTE project (PID2019-110234RB-C21). We acknowledge the World Climate research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP. Technical support at BSC (Computational Earth Sciences group) is sincerely acknowledged. We also thank the two anonymous reviewers for their valuable insights.Peer ReviewedPostprint (published version

    Tropospheric pathways of the late-winter ENSO teleconnection to Europe

    Full text link
    The late-winter signal associated with the El Niño-Southern Oscillation (ENSO) over the European continent is unsettled. Two main anomalous patterns of sea-level pressure (SLP) can be identified: a "wave-like" pattern with two opposite-signed anomalies over Europe, and a pattern showing a single anomaly ("semi-isolated"). In this work, potential paths of the tropospheric ENSO teleconnection to Europe and their role in favoring a more wave-like or semi-isolated pattern are explored. Outputs from historical runs of two versions of the MPI-ESM coupled model, which simulate these two types of patterns, are examined. A novel ray-tracing approach that accounts for zonal asymmetries in the background flow is used to test potential propagation paths in these simulations and in observations; three source regions are considered: the tropical Pacific, the North America/North Atlantic, and the tropical Atlantic. The semi-isolated pattern is suggested to be related to the well-known Rossby wave train emanating from the tropical Pacific, either via a split over northern North America or via reflection due to inhomogeneities in the background flow. The wave-like pattern, in turn, appears to be related to a secondary wave train emerging from the tropical Atlantic. The competition between these two pathways contributes to determining the actual surface response

    Multi-model assessment of the late-winter extra-tropical response to El Niño and La Niña

    Get PDF
    El Niño-Southern Oscillation (ENSO) is known to affect the Northern Hemisphere tropospheric circulation in late-winter (January-March), but whether El Niño and La Niña lead to symmetric impacts and with the same underlying dynamics remains unclear, particularly in the North Atlantic. Three state-of-the-art atmospheric models forced by symmetric anomalous sea surface temperature (SST) patterns, mimicking strong ENSO events, are used to robustly diagnose symmetries and asymmetries in the extra-tropical ENSO response. Asymmetries arise in the sea-level pressure (SLP) response over the North Pacific and North Atlantic, as the response to La Niña tends to be weaker and shifted westward with respect to that of El Niño. The difference in amplitude can be traced back to the distinct energy available for the two ENSO phases associated with the non-linear diabatic heating response to the total SST field. The longitudinal shift is embedded into the large-scale Rossby wave train triggered from the tropical Pacific, as its anomalies in the upper troposphere show a similar westward displacement in La Niña compared to El Niño. To fully explain this shift, the response in tropical convection and the related anomalous upper-level divergence have to be considered together with the climatological vorticity gradient of the subtropical jet, i.e. diagnosing the tropical Rossby wave source. In the North Atlantic, the ENSO-forced SLP signal is a well-known dipole between middle and high latitudes, different from the North Atlantic Oscillation, whose asymmetry is not indicative of distinct mechanisms driving the teleconnection for El Niño and La Niña

    Importance of late fall ENSO teleconnection in the Euro-Atlantic sector

    Get PDF
    Recent studies have indicated the importance of fall climate forcings and teleconnections in influencing the climate of the northern mid-to-high latitudes. Here, we present some exploratory analyses using observational data and seasonal hindcasts, with the aim of highlighting the potential of the El Niño-Southern Oscillation (ENSO) as a driver of climate variability during boreal late fall/early winter (November/December) in the North Atlantic-European sector and motivating further research on this relatively unexplored topic. The atmospheric ENSO teleconnection in November/December is reminiscent of the East Atlantic pattern and distinct from the well-known arching extratropical Rossby wavetrain found from January to March. Temperature and precipitation over Europe in November are positively correlated with the Niño3.4 index, which suggests a potentially important ENSO climate impact during late fall. In particular, the ENSO-related temperature anomaly extends over a much larger area than during the subsequent winter mont

    Seasonality of African Precipitation from 1996 to 2009

    Get PDF
    Abstract A precipitation climatology of Africa is documented using 12 years of satellite-derived daily data from the Global Precipitation Climatology Project (GPCP). The focus is on examining spatial variations in the annual cycle and describing characteristics of the wet season(s) using a consistent, objective, and well-tested methodology. Onset is defined as occurring when daily precipitation consistently exceeds its local annual daily average and ends when precipitation systematically drops below that value. Wet season length, rate, and total are then determined. Much of Africa is characterized by a single summer wet season, with a well-defined onset and end, during which most precipitation falls. Exceptions to the single wet season regime occur mostly near the equator, where two wet periods are usually separated by a period of relatively modest precipitation. Another particularly interesting region is the semiarid to arid eastern Horn of Africa, where there are two short wet seasons separated by nearly dry periods. Chiefly, the summer monsoon spreads poleward from near the equator in both hemispheres, although in southern Africa the wet season progresses northwestward from the southeast coast. Composites relative to onset are constructed for selected points in West Africa and in the eastern Horn of Africa. In each case, onset is often preceded by the arrival of an eastward-propagating precipitation disturbance. Comparisons are made with the satellite-based Tropical Rainfall Measuring Mission (TRMM) and gauge-based Famine Early Warning System (FEWS NET) datasets. GPCP estimates are generally higher than TRMM in the wettest parts of Africa, but the timing of the annual cycle and average onset dates are largely consistent

    Climatology and interannual variability of boreal spring wet season precipitation in the eastern Horn of Africa and implications for its recent decline

    Get PDF
    The 1981-2014 climatology and variability of the March-May eastern Horn of Africa boreal spring wet season are examined using precipitation, upper- and lower-level winds, low-level specific humidity, and convective available potential energy (CAPE), with the aim of better understanding the establishment of the wet season and the cause of the recent observed decline. At 850 mb, the development of the wet season is characterized by increasing specific humidity and winds that veer from northeasterly in February to southerly in June and advect moisture into the region, in agreement with an earlier study. Equally important, however, is a substantial weakening of the 200-mb climatological easterly winds in March. Likewise, the shutdown of the wet season coincides with the return of strong easterly winds in June. Similar changes are seen in the daily evolution of specific humidity and 200-mb wind when composited relative to the interannual wet season onset and end, with the easterlies decreasing (increasing) several days prior to the start (end) of the wet season. The 1981-2014 decrease in March-May precipitation has also coincided with an increase in 200-mb easterly winds, with no attendant change in specific humidity, leading to the conclusion that, while high values of specific humidity are an important ingredient of the wet season, the recent observed precipitation decline has resulted mostly from a strengthening of the 200-mb easterlies. This change in the easterly winds appears to be related to an increase in convection over the Indonesian region and in the associated outflow from that enhanced heat source

    Progress in Detection and Projection of Climate Change in Spain since the 2010 CLIVAR-Spain regional climate change assessment report

    Get PDF
    The Iberian Peninsula region offers a challenging benchmark for climate variability studies for several reasons. It exhibits a wide variety of climatic regimes, ranging from wet Atlantic climates with annual precipitation around 2000 mm, to extensive semiarid regions with severe hydrological stress, to even cold alpine environments in some isolated areas

    Measurement report: Spatial variability of northern Iberian rainfall stable isotope values - investigating atmospheric controls on daily and monthly timescales

    Get PDF
    For the first time, this article presents a large dataset of precipitation isotopic measurements (δ18Op and δ2Hp) sampled every day or 2 d from seven sites on a west-to-east transect across northern Spain for 2010-2017. The main aim of this study is to (1) characterize the rainfall isotopic variability in northern Spain at daily and monthly timescales and (2) assess the principal factors influencing rainfall isotopic variability. The relative role of air temperature and rainfall in determining the stable isotope composition of precipitation changes along the west-to-east transect, with air temperature being highly correlated with δ18Op at daily and monthly timescales, while a few sites along the transect show a significant negative correlation with precipitation. The highest air temperature-δ18Op dependency is found for a station located in the Pyrenees. Frontal systems associated with North Atlantic cyclones are the dominant mechanism inducing precipitation in this region, particularly in winter. This study allows an exploration of the role of air mass source and trajectory in determining the isotopic composition of rainfall in northern Iberia by characterizing the moisture uptake for three of the seven stations. The importance of continental versus marine moisture sources is evident, with clear seasonal and spatial variations. In addition, the type of precipitation (convective versus frontal rainfall) plays a key role, with convective rainfall associated with higher δ18Op values. This comprehensive spatiotemporal approach to analyzing the rainfall isotopic composition represents another step forward towards developing a more detailed, mechanistic framework for interpreting stable isotopes in rainfall as a paleoclimate and hydrological tracer
    corecore