137 research outputs found

    Development of techniques and technology for full polarimetric radar applied to concealed weapons detection

    Get PDF
    One of the biggest threats to modern society is the increasing use by criminals and terrorists of concealed weapons and person born improvised explosive devices (PBIED). Current highly mature security screening technologies using x-ray and metal detectors have limited deployment scenarios based on health and safety issues and operational range, respectively. Given that most clothing is greater than 90% transmissive in the microwave region, this spectral band is ideal for screening people for concealed threats. However, due to diffraction, imagery to screen subjects is limited due to the small number of pixels. In this regime, the exploitation of microwave polarimetry from the field of remote sensing has particular benefits, as it extracts maximum information content from a single pixel. The work presented in this thesis has assembled a full polarimetric frequency stepped radar from a vector network analyser (VNA), a linear orthogonal mode transducer (OMT) of the turnstile type and a conical corrugated horn antenna. The system’s characterisation by antenna pattern measurements, the measuring of canonical targets of the plane, dihedral, dipole and helical reflectors showed the system to be capable of making localised Sinclair matrix measurements of targets at ranges of two to three metres. The work presents a calibration procedure comprising the VNA’s internal calibration and an external calibration to compensate for dispersion and cross-polar leakage of system components. Static target measurements (canonical and various surrogate items) were analysed, using range gating for clutter rejection. Calibrated Sinclair parameter measurements compared with those from simple simulations, all software being programmed in Matlab. Measurements of moving targets revealed the phenomenon of speckle, this introducing rapid changes in the Sinclair Parameters. Data analysis performed using the coherency matrix and the Cloude/Pottier decomposition minimised the effects of speckle in the processed data. Measurements show movement from particularly rough surfaces increased the parameter of the Cloude/Pottier entropy, the level of this being directly linked to the degree of speckle. Application of the Huynen polarisation fork technique (a type of decomposition) has proved to aid the identification of static and moving targets. A detailed analysis of iii the Huynen fork responses is made of the human torso on its own, weapons on their own and then weapons positioned against the human torso. Responses of nondangerous objects such as keys and a smartphone are additionally presented

    Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

    Get PDF
    We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic

    The C-Band All-Sky Survey (C-BASS): design and implementation of the northern receiver

    Get PDF
    The C-Band All-Sky Survey is a project to map the full sky in total intensity and linear polarization at 5 GHz. The northern component of the survey uses a broad-band single-frequency analogue receiver fitted to a 6.1-m telescope at the Owens Valley Radio Observatory in California, USA. The receiver architecture combines a continuous-comparison radiometer and a correlation polarimeter in a single receiver for stable simultaneous measurement of both total intensity and linear polarization, using custom-designed analogue receiver components. The continuous-comparison radiometer measures the temperature difference between the sky and temperature-stabilized cold electrical reference loads. A cryogenic front-end is used to minimize receiver noise, with a system temperature of ≈30 K in both linear polarization and total intensity. Custom cryogenic notch filters are used to counteract man-made radio frequency interference. The radiometer 1/f noise is dominated by atmospheric fluctuations, while the polarimeter achieves a 1/f noise knee frequency of 10 mHz, similar to the telescope azimuthal scan frequency

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s−1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    Get PDF
    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.The QUIJOTE-CMB experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2010-21766-C03 (01, 02 and 03), and also by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation49)

    The status of the Quijote multi-frequency instrument

    Get PDF
    The QUIJOTE-CMB project has been described in previous publications. Here we present the current status of the QUIJOTE multi-frequency instrument (MFI) with five separate polarimeters (providing 5 independent sky pixels): two which operate at 10-14 GHz, two which operate at 16-20 GHz, and a central polarimeter at 30 GHz. The optical arrangement includes 5 conical corrugated feedhorns staring into a dual reflector crossed-draconian system, which provides optimal cross-polarization properties (designed to be < -35 dB) and symmetric beams. Each horn feeds a novel cryogenic on-axis rotating polar modulator which can rotate at a speed of up to 1 Hz. The science driver for this first instrument is the characterization of the galactic emission. The polarimeters use the polar modulator to derive linear polar parameters Q, U and I and switch out various systematics. The detection system provides optimum sensitivity through 2 correlated and 2 total power channels. The system is calibrated using bright polarized celestial sources and through a secondary calibration source and antenna. The acquisition system, telescope control and housekeeping are all linked through a real-time gigabit Ethernet network. All communication, power and helium gas are passed through a central rotary joint. The time stamp is synchronized to a GPS time signal. The acquisition software is based on PLCs written in Beckhoffs TwinCat and ethercat. The user interface is written in LABVIEW. The status of the QUIJOTE MFI will be presented including pre-commissioning results and laboratory testing
    • …
    corecore