102 research outputs found

    Constraints on ocean carbonate chemistry and p_(CO_2) in the Archaean and Palaeoproterozoic

    Get PDF
    One of the great problems in the history of Earth’s climate is how to reconcile evidence for liquid water and habitable climates on early Earth with the Faint Young Sun predicted from stellar evolution models. Possible solutions include a wide range of atmospheric and oceanic chemistries, with large uncertainties in boundary conditions for the evolution and diversification of life and the role of the global carbon cycle in maintaining habitable climates. Increased atmospheric CO_2 is a common component of many solutions, but its connection to the carbon chemistry of the ocean remains unknown. Here we present calcium isotope data spanning the period from 2.7 to 1.9 billion years ago from evaporitic sedimentary carbonates that can test this relationship. These data, from the Tumbiana Formation, the Campbellrand Platform and the Pethei Group, exhibit limited variability. Such limited variability occurs in marine environments with a high ratio of calcium to carbonate alkalinity. We are therefore able to rule out soda ocean conditions during this period of Earth history. We further interpret this and existing data to provide empirical constraints for carbonate chemistry of the ancient oceans and for the role of CO_2 in compensating for the Faint Young Sun

    Constraints on ocean carbonate chemistry and p_(CO_2) in the Archaean and Palaeoproterozoic

    Get PDF
    One of the great problems in the history of Earth’s climate is how to reconcile evidence for liquid water and habitable climates on early Earth with the Faint Young Sun predicted from stellar evolution models. Possible solutions include a wide range of atmospheric and oceanic chemistries, with large uncertainties in boundary conditions for the evolution and diversification of life and the role of the global carbon cycle in maintaining habitable climates. Increased atmospheric CO_2 is a common component of many solutions, but its connection to the carbon chemistry of the ocean remains unknown. Here we present calcium isotope data spanning the period from 2.7 to 1.9 billion years ago from evaporitic sedimentary carbonates that can test this relationship. These data, from the Tumbiana Formation, the Campbellrand Platform and the Pethei Group, exhibit limited variability. Such limited variability occurs in marine environments with a high ratio of calcium to carbonate alkalinity. We are therefore able to rule out soda ocean conditions during this period of Earth history. We further interpret this and existing data to provide empirical constraints for carbonate chemistry of the ancient oceans and for the role of CO_2 in compensating for the Faint Young Sun

    Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes

    Get PDF
    Accurate encoding of the spatio-temporal properties of others' actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions ("slow-motion" bias), allowing for more detailed representation of ongoing actions and refined prediction abilities

    Reproducibility and day time bias correction of optoelectronic leg volumetry: a prospective cohort study

    Get PDF
    Background Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Methods Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC). Results A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P < .001). A therefore determined time-correction formula permitted further improvement of CVW. Conclusions Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula

    Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 510–526, doi:10.1002/2014PA002741.Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.Z.L. thanks NSF OCE 1232620. J.D.O. is supported by an Agouron Postdoctoral Fellowship. T.W.L. acknowledges support from the NSF-EAR and NASA-NAI. A.R. thanks the support of NERC via NE/J01043X/1.2015-11-1

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles

    Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells.

    Get PDF
    BACKGROUND: Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice. RESULTS: Our analysis reveals that the expression levels of most genes are generally preserved in B cell precursors isolated from aged compared with young mice. Nonetheless, age-specific expression changes are observed at numerous genes, including microRNA encoding genes. Importantly, these changes are underpinned by multi-layered alterations in chromatin structure, including chromatin accessibility, histone modifications, long-range promoter interactions, and nuclear compartmentalization. Previous work has shown that differentiation is linked to changes in promoter-regulatory element interactions. We find that aging in B cell precursors is accompanied by rewiring of such interactions. We identify transcriptional downregulation of components of the insulin-like growth factor signaling pathway, in particular downregulation of Irs1 and upregulation of Let-7 microRNA expression, as a signature of the aged phenotype. These changes in expression are associated with specific alterations in H3K27me3 occupancy, suggesting that Polycomb-mediated repression plays a role in precursor B cell aging. CONCLUSIONS: Changes in chromatin and 3D genome organization play an important role in shaping the altered gene expression profile of aged precursor B cells. Components of the insulin-like growth factor signaling pathways are key targets of epigenetic regulation in aging in bone marrow B cell precursors

    Leg Symptoms of Somatic, Psychic, and Unexplained Origin in the Population-based Bonn Vein Study

    Get PDF
    ObjectiveTo assess the somatic and psychic components of venous-type leg symptoms.MethodsThe psychic versus somatic venous disease questionnaire (PsySoVDQ) was applied to 1,800 participants of the Bonn Vein Study (BVS) II.ResultsFactor analysis of the PsySoVDQ made it possible to distinguish a psychic component (PC; 5 items, Cronbach's alpha = 0.73) separate from a somatic component (SC; 4 items, Cronbach's alpha = 0.67). The PC reflected anxiety and inhibition, was prevalent in 39.8% and explained 7.3% of the BVS findings. Higher PC scores were typically found in younger, slim women of higher social status, with feelings of leg heaviness and tension, and reduced psychic quality of life. The SC prevailed in 37.4% and explained 16.5% of BVS findings. Typical SC scorers were older, overweight women with lower social status, more symptoms (including swelling), signs of chronic venous insufficiency, ultrasound-documented venous abnormalities, and reduced multidimensional quality of life. The SC's predictive accuracy for CEAP 2 and 3 (classification according to clinical findings, etiology, anatomy, pathophysiology) was equal to that of the BVS assessment.ConclusionThe PsySoVDQ identified somatic and psychic components of the widespread and frequently reported leg symptoms in the general population. Nevertheless, in the majority of subjects symptoms remained unexplained. A neuropsychological and neurobiological hypothesis is advanced
    • …
    corecore