83 research outputs found

    Classical Interactions for Tensionless Strings

    Get PDF
    Using an ``action at a distance'' formulation we probe the possible classical interactions for tensionless strings, (the T0T\to 0 limit of the ordinary bosonic string.) We find GμνG_{\mu\nu} and BμνB_{\mu\nu} type interactions but no dilaton interactions.Comment: 9 pages, Late

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Quality Parameters for Renovation

    Get PDF
    publishedVersio

    Spatiotemporal Variations in Snow and Soil Frost : A Review of Measurement Techniques

    No full text
    Large parts of the northern hemisphere are covered by snow and seasonal frost. Climate warming is affecting spatiotemporal variations of snow and frost, hence influencing snowmelt infiltration, aquifer recharge and river runoff patterns. Measurement difficulties have hampered progress in properly assessing how variations in snow and frost impact snowmelt infiltration. This has led to contradicting findings. Some studies indicate that groundwater recharge response is scale dependent. It is thus important to measure snow and soil frost properties with temporal and spatial scales appropriate to improve infiltration process knowledge. The main aim with this paper is therefore to review ground based methods to measure snow properties (depth, density, water equivalent, wetness, and layering) and soil frost properties (depth, water and ice content, permeability, and distance to groundwater) and to make recommendations for process studies aiming to improve knowledge regarding infiltration in regions with seasonal frost. Ground-based radar (GBR) comes in many different combinations and can, depending on design, be used to assess both spatial and temporal variations in snow and frost so combinations of GBR and tracer techniques can be recommended and new promising methods (auocostics and self potential) are evolving, but the study design must be adapted to the scales, the aims and the resources of the study. View Full-Tex

    Scalable Consumer Content in the Future Digital Environment

    No full text
    A Nordic consortium has studied IPR related obstacles and opportunities that digitalisation brings out with regard to scalable consumer contents in innovative industries. The focus was on growth, internationalisation and cross-sector innovations. Of all intellectual property rights (IPR) the project emphasized the copyright regime, but industrial rights, like patents and trademarks, were also taken into consideration. The consortium included academic partners in Finland, Denmark, and Sweden. They each had their subprojects that were tightly linked together and accomplished in parallel. Each subproject had its own scientific viewpoint on the Nordic innovative industries. The key findings of the project are: The Danish, Swedish and Finnish IP laws are similar to a large extent. They have common historical backgrounds, but they are also essentially regulated by international treaties and EU directives. Therefore, the Nordic countries don’t have too much liberty to radically renew the IPR system by themselves – even though businesses would appreciate a more modern IPR regime. Related or neighbouring rights are a very fragmented and difficult entity to perceive. It seems generally quite random when a thing is protected by a related right and when it is not. They should be clarified by identifying the unified basis of the various related rights and by developing legislation or at least its interpretation in the direction of general lessons and principles rather than that of casuistic and fragmented rules. Age rating systems are unnecessarily complicated and disunited. The Danish, Swedish and Finnish TV production and gaming industries prefer arbitration over civil court litigation. The Danish, Swedish and Finnish IP contracts in the TV production and gaming industries prefer full exclusivity over partly exclusivity. Electrodermal activity (EDA) in combination with eye-tracking measurement provides new opportunities for marketing practitioners and scholars interested in studying emotional arousal and its influence on behavior. It enables to record moment-to-moment arousal. It allows to rule out cognitive biases by which self-reports may be affected. It captures arousal even when it is unconsciously experienced. Nevertheless, it should not been seen as a mere replacement of self-reports of arousal. Rather, the role of physiologically measured arousal vis-à-vis self-assessed arousal is an avenue for future research. We summarize our policy recommendations in the following: The Nordic countries should harmonize their intellectual property laws and licensing policies further than the European Union has been able to do so far. Especially, differences in copyright thresholds as well as the fragmented and unjustified system of related rights create annoying business obstacles. In licensing, the creative industries can learn from the best practices form other creative areas. The Nordic countries should remove unnecessary differences in their age ratings in the creative areas. The music industry should understand that humans instinctively act on impulses from the primal cord. These impulses generate various reactions which affect how we feel. Music together with scent, is one of very few impulses humans can protect themselves from that will have a direct effect on human well-being. Apply a more scientific approach to understand how music affects people in real life settings. In retail settings, a pleasant customer experience is key for survival. Music can be used to shape behaviour in a good way, eg. more healthy living. Applying more scientific methods to accomplish this is beneficial for society
    corecore