123 research outputs found
Q-SEA - a tool for quality assessment of ethics analyses conducted as part of health technology assessments
Introduction: Assessment of ethics issues is an important part of health technology assessments (HTA). However, in terms of existence of quality assessment tools, ethics for HTA is methodologically under-developed in comparison to other areas of HTA, such as clinical or cost effectiveness.Objective: To methodologically advance ethics for HTA by: (1) proposing and elaborating Q-SEA, the first instrument for quality assessment of ethics analyses, and (2) applying Q-SEA to a sample systematic review of ethics for HTA, in order to illustrate and facilitate its use. Methods: To develop a list of items for the Q-SEA instrument, we sys-tematically reviewed the literature on methodology in ethics for HTA, reviewed HTA organizations’ websites, and solicited views from 32 ex-perts in the field of ethics for HTA at two 2-day workshops. We sub-sequently refined Q-SEA through its application to an ethics analysis conducted for HTA.Results: Q-SEA instrument consists of two domains – the process do-main and the output domain. The process domain consists of 5 ele-ments: research question, literature search, inclusion/exclusion criteria, perspective, and ethics framework. The output domain consists of 5 elements: completeness, bias, implications, conceptual clarification, and conflicting values.Conclusion: Q-SEA is the first instrument for quality assessment of ethics analyses in HTA. Further refinements to the instrument to enhance its usability continue
Influence of Future Time Perspective on Involvement: an Approach With Two Studies
The aim of this research is to extend current knowledge of older consumers' behaviour, focusing on involvement and future time perspective. Furthermore, we propose recommendations for customer approaches in the context of colon cancer prevention, as older consumers increasingly face new challenges in the realm of medical decision-making
Bacteria producing contractile phage tail-like particles (CPTPs) are promising alternatives to conventional pesticides
Diese Übersichtsarbeit verfolgt das Ziel, über bakterielle kontraktile Phagenderivate (englisch CPTPs) und ihr Potenzial als effiziente und Schadorganismus-spezifische Alternativen zu konventionellen chemischen Pflanzenschutzmitteln in der Land-/Forstwirtschaft und im Gartenbau zu informieren. CPTPs werden von verschiedenen Bakterien in diversen Habitaten für den interbakteriellen Konkurrenzkampf sowie zur Beeinflussung eukaryotischer Wirte, wie Pilze und Insekten, verwendet. Diese Arbeit präsentiert interessante und bemerkenswerte Beispiele für den vielfältigen Einsatz von CPTPs als leistungsfähige biologische Bekämpfungsmittel. Wir stellen die verschiedenen Typen von CPTPs vor und legen einen besonderen Fokus auf diejenigen, die eine Wirkung gegen Schadinsekten besitzen. Zusätzlich stellen wir zwei kürzlich etablierte Webservices vor, die das permanent wachsende Wissen über CPTPs mit einem Auswahlverfahren für die besten Bakterienkandidaten kombinieren, um eine zielgerichtete Anwendung der CPTPs in der nachhaltigen Pflanzenproduktion zu ermöglichen.This mini-review aims at raising the interest in contractile phage tail-like particles (CPTPs) of bacteria as an efficient and pest-specific alternative to conventional chemical pesticides in agriculture, horticulture and forestry. CPTPs are used by various bacteria in diverse environments for interbacterial competition or for manipulation of eukaryotic hosts, such as fungi or insects. This review gives examples for the versatile use of CPTPs as powerful biological control agents. We introduce the different types of CPTPs with a special focus on those with activity against insect plant pests. In addition, we present two currently established web services that combine the permanently increasing knowledge on CPTPs with a selection approach of the best candidate bacteria for targeted CPTP application in sustainable plant production
Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics
We present measurements of the polarization-transfer components in the
H reaction, covering a previously unexplored kinematic
region with large positive (anti-parallel) missing momentum, , up
to 220 MeV, and . These measurements, performed
at the Mainz Microtron (MAMI), were motivated by theoretical calculations which
predict small final-state interaction (FSI) effects in these kinematics, making
them favorable for searching for medium modifications of bound nucleons in
nuclei. We find in this kinematic region that the measured
polarization-transfer components and and their ratio agree with the
theoretical calculations, which use free-proton form factors. Using this, we
establish upper limits on possible medium effects that modify the bound
proton's form factor ratio at the level of a few percent. We also
compare the measured polarization-transfer components and their ratio for H
to those of a free (moving) proton. We find that the universal behavior of
H, He and C in the double ratio
is maintained in the positive
missing-momentum region
Recommended from our members
Naturally prefabricated marine biomaterials: Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (demospongiae: Verongiida)
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics. © 2019 by the authors. Licensee MDPI, Basel, Switzerland
Recommended from our members
Naturally drug-loaded chitin: Isolation and applications
Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring (“ready-to-use”) chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assa
Maternal human papillomavirus infections at mid-pregnancy and delivery in a Scandinavian mother–child cohort study
publishedVersio
- …