247 research outputs found
An Optical/Near-Infrared Study of Radio-Loud Quasar Environments II. Imaging Results
We use optical and near-IR imaging to examine the properties of the
significant excess population of K>=19 galaxies found in the fields of 31 z=1-2
radio-loud quasars by Hall, Green & Cohen (1998). The excess occurs on two
spatial scales: a component at <40'' from the quasars significant compared to
the galaxy surface density at >40'' in the same fields, and a component roughly
uniform to ~100'' significant compared to the galaxy surface density seen in
random-field surveys in the literature. The r-K color distributions of the
excess galaxy populations are indistinguishable and are significantly redder
than the color distribution of the field population.
The excess galaxies are consistent with being predominantly early-type
galaxies at the quasar redshifts, and there is no evidence that they are
associated with intervening MgII absorption systems. The average excess within
0.5 Mpc (~65'') of the quasars corresponds to Abell richness class ~0 compared
to the galaxy surface density at >0.5 Mpc from the quasars, and to Abell
richness class ~1.5 compared to that from the literature.
We discuss the spectral energy distributions (SEDs) of galaxies in fields
with data in several passbands. Most candidate quasar-associated galaxies are
consistent with being 2-3 Gyr old early-types at the quasar redshifts of z~1.5.
However, some objects have SEDs consistent with being 4-5 Gyr old at z~1.5, and
a number of others are consistent with ~2 Gyr old but dust-reddened galaxies at
the quasar redshifts. These potentially different galaxy types suggest there
may be considerable dispersion in the properties of early-type cluster galaxies
at z~1.5. There is also a population of galaxies whose SEDs are best modelled
by background galaxies at z>2.5.Comment: Accepted to ApJ; 54 pages including 30 figures; 2 color GIF files
available separately; also available from
http://www.astro.utoronto.ca/~hall/thesis.htm
Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures Above 10^4 Kelvin
The first generation of protogalaxies likely formed out of primordial gas via
H2-cooling in cosmological minihalos with virial temperatures of a few 1000K.
However, their abundance is likely to have been severely limited by feedback
processes which suppressed H2 formation. The formation of the protogalaxies
responsible for reionization and metal-enrichment of the intergalactic medium,
then had to await the collapse of larger halos. Here we investigate the
radiative cooling and collapse of gas in halos with virial temperatures Tvir >
10^4K. In these halos, efficient atomic line radiation allows rapid cooling of
the gas to 8000 K; subsequently the gas can contract nearly isothermally at
this temperature. Without an additional coolant, the gas would likely settle
into a locally gravitationally stable disk; only disks with unusually low spin
would be unstable. However, we find that the initial atomic line cooling leaves
a large, out-of-equilibrium residual free electron fraction. This allows the
molecular fraction to build up to a universal value of about x(H2) = 10^-3,
almost independently of initial density and temperature. We show that this is a
non--equilibrium freezeout value that can be understood in terms of timescale
arguments. Furthermore, unlike in less massive halos, H2 formation is largely
impervious to feedback from external UV fields, due to the high initial
densities achieved by atomic cooling. The H2 molecules cool the gas further to
about 100K, and allow the gas to fragment on scales of a few 100 Msun. We
investigate the importance of various feedback effects such as
H2-photodissociation from internal UV fields and radiation pressure due to
Ly-alpha photon trapping, which are likely to regulate the efficiency of star
formation.Comment: Revised version accepted by ApJ; some reorganization for clarit
Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)
Bovine TB is a major problem for the agricultural industry in several
countries. TB can be contracted and spread by species other than cattle and
this can cause a problem for disease control. In the UK and Ireland, badgers
are a recognised reservoir of infection and there has been substantial
discussion about potential control strategies. We present a coupling of
individual based models of bovine TB in badgers and cattle, which aims to
capture the key details of the natural history of the disease and of both
species at approximately county scale. The model is spatially explicit it
follows a very large number of cattle and badgers on a different grid size for
each species and includes also winter housing. We show that the model can
replicate the reported dynamics of both cattle and badger populations as well
as the increasing prevalence of the disease in cattle. Parameter space used as
input in simulations was swept out using Latin hypercube sampling and
sensitivity analysis to model outputs was conducted using mixed effect models.
By exploring a large and computationally intensive parameter space we show that
of the available control strategies it is the frequency of TB testing and
whether or not winter housing is practised that have the most significant
effects on the number of infected cattle, with the effect of winter housing
becoming stronger as farm size increases. Whether badgers were culled or not
explained about 5%, while the accuracy of the test employed to detect infected
cattle explained less than 3% of the variance in the number of infected cattle
Patient radiation dose issues resulting from the use of CT in the UK
In this report, COMARE presents a comprehensive review of the radiation dose issues associated with CT scans in the UK. The implications of the increase in the numbers of CT scans in the UK are considered in the report, with focus on the number of younger patients undergoing CT scans, who have greater sensitivity to x-rays. The report provides an update on the radiation protection aspects of justification (balancing risk and benefit) and optimisation (balancing the risk from the radiation dose with the quality of the image)
Radium contamination in the area around Dalgety Bay
In this report, the Committee on Medical Aspects of Radiation in the Environment (COMARE) presents a comprehensive review of the radium contamination in the area around Dalgety Bay. This report covers the history of the site, the type and extent of the contamination, the recent investigations and the cancer epidemiology for the area. The report also considers the implications for other similarly contaminated sites
Leafless roughness of complex tree morphology using terrestrial LiDAR
Strategies for extracting roughness parameters from riparian forests need to address the issue that the trees are more than just stems and that in large rivers flow can rise into the canopy. Remote sensing information with 3-D capabilities such as lidar can be used to extract information on trees. However, first and last pulse airborne lidar data are insufficient to characterize the complex vertical structure of vegetation because by definition, there are few data at intermediate levels. Terrestrial laser scanning (TLS) is used in this study to define complex structures at a millimetric scanning resolution for the purpose of extracting canopy parameters relevant for the parameterization of the flow resistance equations. We will mainly be concerned with the projected area of leafless trees, estimating the total tree dimensions using several different methods. These include manipulating mass point cloud data obtained from TLS to create stage-dependent projected areas through complex meshing techniques and voxelization. Stage-dependent projected areas were defined for natural and planted poplar forests in the riparian zone of the Garonne and Allier rivers in southern and central France, respectively. Roughness values for planted poplar forests dominant in many western European river floodplains range from Manning's n = 0.037–0.094 and n = 0.140–0.330 for below-canopy flow (2 m) and extreme in-canopy flow (8 m), respectively. Roughness values for natural poplar forests ranged from n = 0.066–0.210 and n = 0.202–0.720 for below-canopy flow (2 m) and extreme in-canopy flow (8 m), respectively
Recommended from our members
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field
Recommended from our members
The extratropical upper troposphere and lower stratosphere
The extratropical upper troposphere and lower stratosphere (Ex-UTLS) is a transition region between the stratosphere and the troposphere. The Ex-UTLS includes the tropopause, a strong static stability gradient and dynamic barrier to transport. The barrier is reflected in tracer profiles. This region exhibits complex dynamical, radiative, and chemical characteristics that place stringent spatial and temporal requirements on observing and modeling systems. The Ex-UTLS couples the stratosphere to the troposphere through chemical constituent transport (of, e.g., ozone), by dynamically linking the stratospheric circulation with tropospheric wave patterns, and via radiative processes tied to optically thick clouds and clear-sky gradients of radiatively active gases. A comprehensive picture of the Ex-UTLS is presented that brings together different definitions of the tropopause, focusing on observed dynamical and chemical structure and their coupling. This integral view recognizes that thermal gradients and dynamic barriers are necessarily linked, that these barriers inhibit mixing and give rise to specific trace gas distributions, and that there are radiative feedbacks that help maintain this structure. The impacts of 21st century anthropogenic changes to the atmosphere due to ozone recovery and climate change will be felt in the Ex-UTLS, and recent simulations of these effects are summarized and placed in context
MadingleyR: An R package for mechanistic ecosystem modelling
Abstract: Aim: Mechanistic general ecosystem models are used to explore fundamental ecological dynamics and to assess possible consequences of anthropogenic and natural disturbances on ecosystems. The Madingley model is a mechanistic general ecosystem model (GEM) that simulates a coherent global ecosystem, consisting of photo‐autotrophic and heterotrophic life, based on fundamental ecological processes. The C++ implementation of the Madingley model delivers fast computational performance, but it (a) limits the userbase to researchers that are familiar with the intricacies of C++ programming, (b) has limited possibility to change model settings and provide model outputs required to address specific research questions, and (c) has limited reproducibility of simulation experiments. The aim of this paper is to present an R package of the Madingley model to aid with increasing the accessibility and flexibility of the model. Innovation: The MadingleyR R package streamlines the installation procedure and supports all major operating systems. MadingleyR enables users to combine multiple consecutive simulations, making case study specific modifications to MadingleyR objects along the way. Default input files are available from the package and study‐specific inputs can be easily loaded from the R environment. MadingleyR also provides functions to plot and summarize MadingleyR outputs. We provide a comprehensive description of the MadingleyR functions and workflow. We also demonstrate the applicability of the MadingleyR package using three case studies: (a) simulating the cascading effects of the loss of mega‐herbivores on food‐web structure, (b) simulating the impacts of increased land‐use intensity on the total biomass of different feeding guilds by restricting the total vegetation biomass available for feeding and (c) simulating the impacts of an intensive land‐use scenario on a continental scale. Main conclusions: The MadingleyR package provides direct accessibility to simulations with the mechanistic ecosystem model Madingley and is flexible in its application without a loss in performance
- …
