88 research outputs found

    The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical

    Get PDF
    Dynamic processes modify bone micro-structure to adapt to external loading and avoid mechanical failure. Age-related cortical bone loss is thought to occur because of increased endocortical resorption and reduced periosteal formation. Differences in the (re)modeling response to loading on both surfaces, however, are poorly understood. Combining in-vivo tibial loading, in-vivo micro- tomography and finite element analysis, remodeling in C57Bl/6J mice of three ages (10, 26, 78 week old) was analyzed to identify differences in mechano- responsiveness and its age-related change on the two cortical surfaces. Mechanical stimulation enhanced endocortical and periosteal formation and reduced endocortical resorption; a reduction in periosteal resorption was hardly possible since it was low, even without additional loading. Endocortically a greater mechano-responsiveness was identified, evident by a larger bone-forming surface and enhanced thickness of formed bone packets, which was not detected periosteally. Endocortical mechano-responsiveness was better conserved with age, since here adaptive response declined continuously with aging, whereas periosteally the main decay in formation response occurred already before adulthood. Higher endocortical mechano-responsiveness is not due to higher endocortical strains. Although it is clear structural adaptation varies between different bones in the skeleton, this study demonstrates that adaptation varies even at different sites within the same bone

    Pediatric Patient Surface Model Atlas Generation and X-Ray Skin Dose Estimation

    Get PDF
    Fluoroscopy is used in a wide variety of examinations and procedures to diagnose or treat patients in modern pediatric medicine. Although these image guided interventions have many advantages in treating pediatric patients, understanding the deterministic and long term stochastic effects of ionizing radiation are of particular importance for this patient demographic. Therefore, quantitative estimation and visualization of radiation exposure distribution, and dose accumulation over the course of a procedure, is crucial for intra-procedure dose tracking and long term monitoring for risk assessment. Personalized pediatric models are necessary for precise determination of patient-X-ray interactions. One way to obtain such a model is to collect data from a population of pediatric patients, establish a population based generative pediatric model and use the latter for skin dose estimation. In this paper, we generate a population model for pediatric patient using data acquired by two RGB-D cameras from different views. A generative atlas was established using template registration. We evaluated the registered templates and generative atlas by computing the mean vertex error to the associated point cloud. The evaluation results show that the mean vertex error reduced from 25.2 ± 12.9 mm using an average surface model to 18.5 ± 9.4mm using specifically estimated pediatric surface model using the generated atlas. Similarly, the dose estimation error was halved from 10.6 ± 8.5% using the average surface model to 5.9 ± 9.3% using the personalized surface estimates

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Deep action learning enables robust 3D segmentation of body organs in various CT and MRI images

    Get PDF
    In this study, we propose a novel point cloud based 3D registration and segmentation framework using reinforcement learning. An artificial agent, implemented as a distinct actor based on value networks, is trained to predict the optimal piece-wise linear transformation of a point cloud for the joint tasks of registration and segmentation. The actor network estimates a set of plausible actions and the value network aims to select the optimal action for the current observation. Point-wise features that comprise spatial positions (and surface normal vectors in the case of structured meshes), and their corresponding image features, are used to encode the observation and represent the underlying 3D volume. The actor and value networks are applied iteratively to estimate a sequence of transformations that enable accurate delineation of object boundaries. The proposed approach was extensively evaluated in both segmentation and registration tasks using a variety of challenging clinical datasets. Our method has fewer trainable parameters and lower computational complexity compared to the 3D U-Net, and it is independent of the volume resolution. We show that the proposed method is applicable to mono- and multi-modal segmentation tasks, achieving significant improvements over the state-of-the-art for the latter. The flexibility of the proposed framework is further demonstrated for a multi-modal registration application. As we learn to predict actions rather than a target, the proposed method is more robust compared to the 3D U-Net when dealing with previously unseen datasets, acquired using different protocols or modalities. As a result, the proposed method provides a promising multi-purpose segmentation and registration framework, particular in the context of image-guided interventions

    Validation of Finite Element models of the Mouse Tibia using Digital Volume Correlation

    Get PDF
    The mouse tibia is a common site to investigate bone adaptation. Micro-Finite Element (microFE) models based on micro-Computed Tomography (microCT) images can estimate bone mechanical properties non-invasively but their outputs need to be validated with experiments. Digital Volume Correlation (DVC) can provide experimental measurements of displacements over the whole bone volume. In this study we applied DVC to validate the local predictions of microFE models of the mouse tibia in compression. Six mouse tibiae were stepwise compressed within a microCT system. MicroCT images were acquired in four configurations with applied compression of 0.5 N (preload), 6.5 N, 13.0 N and 19.5 N. Failure load was measured after the last scan. A global DVC algorithm was applied to the microCT images in order to obtain the displacement field over the bone volume. Homogeneous, isotropic linear hexahedral microFE models were generated from the images collected in the preload configuration with boundary conditions interpolated from the DVC displacements at the extremities of the tibia. Experimental displacements from DVC and numerical predictions were compared at corresponding locations in the middle of the bone. Stiffness and strength were also estimated from each model and compared with the experimental measurements. The magnitude of the displacement vectors predicted by microFE models was highly correlated with experimental measurements (R2 >0.82). Higher but still reasonable errors were found for the Cartesian components. The models tended to overestimate local displacements in the longitudinal direction (R2 = 0.69–0.90, slope of the regression line=0.50–0.97). Errors in the prediction of structural mechanical properties were 14% ± 11% for stiffness and 9% ± 9% for strength. In conclusion, the DVC approach has been applied to the validation of microFE models of the mouse tibia. The predictions of the models for both structural and local properties have been found reasonable for most preclinical applications

    Increased MCL1 dependency leads to new applications of BH3-mimetics in drug-resistant neuroblastoma.

    Get PDF
    Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-X inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma. [Abstract copyright: © 2023. The Author(s).

    Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models

    Get PDF
    New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load–displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53–0.65, average error of 13–17%). A lower correlation was found for failure load (R2 = 0.21–0.48, average error of 9–15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75–0.80 for stiffness, R2 = 0.55–0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia

    Safety and Efficacy of a Typhoid Conjugate Vaccine in Malawian Children

    Get PDF
    BACKGROUND Typhoid fever caused by multidrug-resistant H58 Salmonella Typhi is an increasing public health threat in sub-Saharan Africa. METHODS We conducted a phase 3, double-blind trial in Blantyre, Malawi, to assess the efficacy of Vi polysaccharide typhoid conjugate vaccine (Vi-TCV). We randomly assigned children who were between 9 months and 12 years of age, in a 1:1 ratio, to receive a single dose of Vi-TCV or meningococcal capsular group A conjugate (MenA) vaccine. The primary outcome was typhoid fever confirmed by blood culture. We report vaccine efficacy and safety outcomes after 18 to 24 months of follow-up. RESULTS The intention-to-treat analysis included 28,130 children, of whom 14,069 were assigned to receive Vi-TCV and 14,061 were assigned to receive the MenA vaccine. Blood culture–confirmed typhoid fever occurred in 12 children in the Vi-TCV group (46.9 cases per 100,000 person-years) and in 62 children in the MenA group (243.2 cases per 100,000 person-years). Overall, the efficacy of Vi-TCV was 80.7% (95% confidence interval [CI], 64.2 to 89.6) in the intention-to-treat analysis and 83.7% (95% CI, 68.1 to 91.6) in the per-protocol analysis. In total, 130 serious adverse events occurred in the first 6 months after vaccination (52 in the Vi-TCV group and 78 in the MenA group), including 6 deaths (all in the MenA group). No serious adverse events were considered by the investigators to be related to vaccination. CONCLUSIONS Among Malawian children 9 months to 12 years of age, administration of Vi-TCV resulted in a lower incidence of blood culture–confirmed typhoid fever than the MenA vaccine. (Funded by the Bill and Melinda Gates Foundation; ClinicalTrials.gov number, NCT03299426

    Validation of calcaneus trabecular microstructure measurements by HR-pQCT

    Get PDF
    OBJECTIVE: Assessment of calcaneus microstructure using high-resolution peripheral quantitative computed tomography (HR-pQCT) might be used to improve fracture risk predictions or to assess responses to pharmacological and physical interventions. To develop a standard clinical protocol for the calcaneus, we validated calcaneus trabecular microstructure measured by HR-pQCT against 'gold-standard' micro-CT measurements. METHODS: Ten human cadaveric feet were scanned in situ using HR-pQCT (isotropic 82μm voxel size) at 100, 150 and 200ms integration times, and at 100ms integration time following removal of the calcaneus from the foot (ex vivo). Dissected portions of these bones were scanned using micro-computed tomography (micro-CT) at an isotropic 17.4μm voxel size. HR-pQCT images were rigidly registered to those obtained with micro-CT and divided into multiple 5mm sided cubes to evaluate and compare morphometric parameters between the modalities. Standard HR-pQCT measurements (derived bone volume fraction (BV/TV(d)); trabecular number, Tb.N; derived trabecular thickness, Tb.Th(d); derived trabecular spacing, Tb.Sp(d)) and corresponding micro-CT voxel-based measurements (BV/TV, Tb.N, Tb.Th, Tb.Sp) were compared. RESULTS: A total of 108 regions of interest were analysed across the 10 specimens. At all integration times HR-pQCT BV/TV(d) was strongly correlated with micro-CT BV/TV (r(2)=0.95-0.98, RMSE=1%), but BV/TV(d) was systematically lower than that measured by micro-CT (mean bias=5%). In contrast, HR-pQCT systematically overestimated Tb.N at all integration times; of the in situ scans, 200ms yielded the lowest mean bias and the strongest correlation with micro-CT (r(2)=0.61, RMSE=0.15mm(-1)). Regional analysis revealed greater accuracy for Tb.N in the superior regions of the calcaneus at all integration times in situ (mean bias=0.44-0.85mm(-1); r(2)=0.70-0.88, p<0.001 versus mean bias=0.63-1.46mm(-1); r(2)<0.10, p≥0.21 for inferior regions). Tb.Sp(d) was underestimated by HR-pQCT compared to micro-CT, but showed similar trends with integration time and the region evaluated as Tb.N. HR-pQCT Tb.Th(d) was also underestimated (mean bias=0.081-0.102mm) and moderately correlated (r(2)=0.55-0.59) with micro-CT Tb.Th, independently from the integration time. Stronger correlations, smaller biases and error were found in the scans of the calcaneus ex vivo compared to in situ. CONCLUSION: Calcaneus trabecular BV/TV(d) and trabecular microstructure, particularly in the superior region of the calcaneus, can be assessed by HR-pQCT. The highest integration time examined, 200ms, compared best with micro-CT. Weaker correlations for microstructure at inferior regions, and also with lower integration times, might limit the use of the proposed protocol, which warrants further investigation in vivo
    • …
    corecore