572 research outputs found

    Structure-function Specialisation of the Interfascicular Matrix in the Human Achilles Tendon

    Get PDF
    Tendon consists of highly aligned collagen-rich fascicles surrounded by interfascicular matrix (IFM). Some tendons act as energy stores to improve locomotion efficiency, but such tendons commonly obtain debilitating injuries. In equine tendons, energy storing is achieved primarily through specialisation of the IFM. However, no studies have investigated IFM structure-function specialisation in human tendons. Here, we compare the human positional anterior tibial tendon and energy storing Achilles tendons, testing the hypothesis that the Achilles tendon IFM has specialised composition and mechanical properties, which are lost with ageing. Data demonstrate IFM specialisation in the energy storing Achilles, with greater elasticity and fatigue resistance than in the positional anterior tibial tendon. With ageing, alterations occur predominantly to the proteome of the Achilles IFM, which are likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments for tendinopathy. STATEMENT OF SIGNIFICANCE: Developing effective therapeutics or preventative measures for tendon injury necessitates the understanding of healthy tendon function and mechanics. By establishing structure-function relationships in human tendon and determining how these are affected by ageing, potential targets for therapeutics can be identified. In this study, we have used a combination of mechanical testing, immunolabelling and proteomics analysis to study structure-function specialisations in human tendon. We demonstrate that the interfascicular matrix is specialised for energy storing in the Achilles tendon, and that its proteome is altered with ageing, which is likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments and preventative approaches for tendinopathy

    The Interfascicular Matrix of Energy Storing Tendons Houses Heterogenous Cell Populations Disproportionately Affected by Aging

    Get PDF
    Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to injury, with incidence increasing with aging, peaking in the 5th decade of life in the human Achilles tendon. The interfascicular matrix (IFM), which binds tendon fascicles, plays a key role in energy storing tendon mechanics, and aging alterations to the IFM negatively impact tendon function. While the mechanical role of the IFM in tendon function is well-established, the biological role of IFM-resident cell populations remains to be elucidated. Therefore, the aim of this study was to identify IFM-resident cell populations and establish how these populations are affected by aging. Cells from young and old SDFTs were subjected to single cell RNA-sequencing, and immunolabelling for markers of each resulting population used to localise cell clusters. Eleven cell clusters were identified, including tenocytes, endothelial cells, mural cells, and immune cells. One tenocyte cluster localised to the fascicular matrix, whereas nine clusters localised to the IFM. Interfascicular tenocytes and mural cells were preferentially affected by aging, with differential expression of genes related to senescence, dysregulated proteostasis and inflammation. This is the first study to establish heterogeneity in IFM cell populations, and to identify age-related alterations specific to IFM-localised cells

    Structure-function specialisation of the interfascicular matrix in the human achilles tendon

    Get PDF
    Tendon consists of highly aligned collagen-rich fascicles surrounded by interfascicular matrix (IFM). Some tendons act as energy stores to improve locomotion efficiency, but such tendons commonly obtain debilitating injuries. In equine tendons, energy storing is achieved primarily through specialisation of the IFM. However, no studies have investigated IFM structure-function specialisation in human tendons. Here, we compare the human positional anterior tibial tendon and energy storing Achilles tendons, testing the hypothesis that the Achilles tendon IFM has specialised composition and mechanical properties, which are lost with ageing. Data demonstrate IFM specialisation in the energy storing Achilles, with greater elasticity and fatigue resistance than in the positional anterior tibial tendon. With ageing, alterations occur predominantly to the proteome of the Achilles IFM, which are likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments for tendinopathy. Statement of significance: Developing effective therapeutics or preventative measures for tendon injury necessitates the understanding of healthy tendon function and mechanics. By establishing structure-function relationships in human tendon and determining how these are affected by ageing, potential targets for therapeutics can be identified. In this study, we have used a combination of mechanical testing, immunolabelling and proteomics analysis to study structure-function specialisations in human tendon. We demonstrate that the interfascicular matrix is specialised for energy storing in the Achilles tendon, and that its proteome is altered with ageing, which is likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments and preventative approaches for tendinopathy.BN/Marie-Eve Aubin-Tam La

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    Screening and brief interventions for hazardous and harmful alcohol use in primary care: a cluster randomised controlled trial protocol

    Get PDF
    A large number of randomised controlled trials in health settings have consistently reported positive effects of brief intervention in terms of reductions in alcohol use. However,although alcohol misuse is common amongst offenders, there is limited evidence of alcohol brief interventions in the criminal justice field. This factorial pragmatic cluster randomised controlledtrial with Offender Managers (OMs) as the unit of randomisation will evaluate the effectiveness and cost-effectiveness of different models of screening to identify hazardous and harmful drinkers in probation and different intensities of brief intervention to reduce excessive drinking in probation clients. Ninety-six OMs from 9 probation areas across 3 English regions (the NorthEast Region (n = 4) and London and the South East Regions (n = 5)) will be recruited. OMs will berandomly allocated to one of three intervention conditions: a client information leaflet control condition (n = 32 OMs); 5-minute simple structured advice (n = 32 OMs) and 20-minute brieflifestyle counselling delivered by an Alcohol Health Worker (n = 32 OMs). Randomisation will be stratified by probation area. To test the relative effectiveness of different screening methods all OMs will be randomised to either the Modified Single Item Screening Questionnaire (M-SASQ) orthe Fast Alcohol Screening Test (FAST). There will be a minimum of 480 clients recruited into the trial. There will be an intention to treat analysis of study outcomes at 6 and 12 months postintervention. Analysis will include client measures (screening result, weekly alcohol consumption,alcohol-related problems, re-offending, public service use and quality of life) and implementation measures from OMs (the extent of screening and brief intervention beyond the minimum recruitment threshold will provide data on acceptability and feasibility of different models of brief intervention). We will also examine the practitioner and organisational factors associated with successful implementation.The trial will evaluate the impact of screening and brief alcohol intervention in routine probation work and therefore its findings will be highly relevant to probation teams and thus the criminal justice system in the UK

    Learning to Eat Vegetables in Early Life: The Role of Timing, Age and Individual Eating Traits

    Get PDF
    Vegetable intake is generally low among children, who appear to be especially fussy during the pre-school years. Repeated exposure is known to enhance intake of a novel vegetable in early life but individual differences in response to familiarisation have emerged from recent studies. In order to understand the factors which predict different responses to repeated exposure, data from the same experiment conducted in three groups of children from three countries (n = 332) aged 4–38 m (18.9±9.9 m) were combined and modelled. During the intervention period each child was given between 5 and 10 exposures to a novel vegetable (artichoke puree) in one of three versions (basic, sweet or added energy). Intake of basic artichoke puree was measured both before and after the exposure period. Overall, younger children consumed more artichoke than older children. Four distinct patterns of eating behaviour during the exposure period were defined. Most children were “learners” (40%) who increased intake over time. 21% consumed more than 75% of what was offered each time and were labelled “plate-clearers”. 16% were considered “non-eaters” eating less than 10 g by the 5th exposure and the remainder were classified as “others” (23%) since their pattern was highly variable. Age was a significant predictor of eating pattern, with older pre-school children more likely to be non-eaters. Plate-clearers had higher enjoyment of food and lower satiety responsiveness than non-eaters who scored highest on food fussiness. Children in the added energy condition showed the smallest change in intake over time, compared to those in the basic or sweetened artichoke condition. Clearly whilst repeated exposure familiarises children with a novel food, alternative strategies that focus on encouraging initial tastes of the target food might be needed for the fussier and older pre-school children

    Structure-function Specialisation of the Interfascicular Matrix in the Human Achilles Tendon

    Get PDF
    ABSTRACTObjectiveTendon consists of highly aligned collagen-rich fascicles surrounded by interfascicular matrix (IFM). Some tendons act as energy stores to improve locomotion efficiency; these tendons are prone to debilitating injuries, the incidence of which increases with ageing. In equine tendons, energy storage is achieved primarily through specialisation of the IFM. However, no studies have investigated IFM structure-function specialisation in human tendons. Here, we compare the positional anterior tibialis and energy storing Achilles tendons, testing the hypothesis that the Achilles IFM has specialised composition and mechanical properties, which are lost with ageing.MethodsWe used a multidisciplinary combination of mechanical testing, immunolocalisation and proteomics to investigate structure-function specialisations in functionally distinct human tendons and how these are altered with ageing.ResultsThe IFM in the energy storing Achilles tendon is more elastic and fatigue resistant than the IFM in the positional anterior tibialis tendon, with a trend towards decreased fatigue resistance with age in the Achilles IFM. With ageing, alterations occur predominantly to the proteome of the Achilles IFM.ConclusionThe Achilles tendon IFM is specialised for energy storage, and changes to its proteome with ageing are likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of key energy storing specialisations and their changes with ageing offers insight towards developing effective treatments for tendinopathy.Key messagesWhat is already known about this subject?Energy storing tendons in animals and humans are particularly prone to tendinopathy and the incidence increases with increasing age.Previous work in some animal models has shown that the specialisation of tendon properties for energy storage is achieved primarily through adaptation of the interfascicular matrix, with specialisation lost in ageing. However, the structural specialisations that provide the human Achilles tendon with its energy storing ability, and how these are affected by ageing, remain to be established.What does this study add?We demonstrate that the interfascicular matrix in the human Achilles tendon is specialised for energy storing, with increased elastic recoil and fatigue resistance, and that these specialisations are partially lost with ageing, likely due to alterations to the proteome of the interfascicular matrix.How might this impact on clinical practice or future developments?Short term, the specialist IFM mechanics we have demonstrated can be detected with new developments in ultrasound functional imaging, offering improved opportunities for contextual tendinopathy diagnostics. Personalised rehabilitation programmes can now be explored and designed specifically to target IFM mechanics.Longer term, the knowledge of key specialisations in injury prone energy storing tendons and how they are affected by ageing, offers crucial insight towards developing cell or tissue engineering treatments targeted at restoring tendon structure and function post-injury, specifically targeted at the IFM.</jats:sec

    Validation of the Comprehensive Feeding Practices Questionnaire with parents of 10-to-12-year-olds

    Get PDF
    Abstract Background: There is a lack of validated instruments for quantifying feeding behavior among parents of older children and adolescents. The Comprehensive Feeding Practices Questionnaire (CFPQ) is a self-report measure to assess multiple parental feeding practices. The CFPQ is originally designed for use with parents of children ranging in age from about 2 to 8 years. It is previously validated with American and French parents of children within this age range. The aim of the present study was to adapt and test the validity of this measure with parents of older children (10-to-12-year-olds) in a Norwegian setting. Methods: A sample of 963 parents of 10-to-12-year-olds completed a Norwegian, slightly adapted version of the CFPQ. Scale analyses were performed to test the validity of the instrument in our sample. Results: Although a few problematic items and scales were revealed, scale analyses showed that the psychometric properties of the slightly adapted, Norwegian version of the CFPQ were surprisingly similar to those of the original CFPQ. Conclusions: Our results indicated that the CFPQ, with some small modifications, is a valid tool for measuring multiple parental feeding practices with parents of 10-to12-year-olds
    • …
    corecore