102 research outputs found

    Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray

    Get PDF
    アインシュタインの光電効果をがん細胞の中で再現 放射線治療への新展開. 京都大学プレスリリース. 2021-07-14.Quantum physics helps destroy cancer cells. 京都大学プレスリリース. 2021-07-14.X-ray irradiation of high Z elements causes photoelectric effects that include the release of Auger electrons that can induce localized DNA breaks. We have previously established a tumor spheroid-based assay that used gadolinium containing mesoporous silica nanoparticles and synchrotron-generated monochromatic X-rays. In this work, we focused on iodine and synthesized iodine-containing porous organosilica (IPO) nanoparticles. IPO were loaded onto tumor spheroids and the spheroids were irradiated with 33.2 keV monochromatic X-ray. After incubation in CO₂ incubator, destruction of tumor spheroids was observed which was accompanied by apoptosis induction, as determined by the TUNEL assay. By employing the γH2AX assay, we detected double strand DNA cleavages immediately after the irradiation. These results suggest that IPO first generate double strand DNA breaks upon X-ray irradiation followed by apoptosis induction of cancer cells. Use of three different monochromatic X-rays having energy levels of 33.0, 33.2 and 33.4 keV as well as X-rays with 0.1 keV energy intervals showed that the optimum effect of all three events (spheroid destruction, apoptosis induction and generation of double strand DNA breaks) occurred with a 33.2 keV monochromatic X-ray. These results uncover the preferential effect of K-edge energy X-ray for tumor spheroid destruction mediated by iodine containing nanoparticles

    Anti-inflammatory therapy with nebulised dornase alfa in patients with severe COVID-19 pneumonia A Randomised Clinical Trial

    Get PDF
    BACKGROUND: SARS-CoV2 infection causes severe, life-threatening pneumonia. Hyper-inflammation, coagulopathy and lymphopenia are associated with pathology and poor outcomes in these patients. Cell-free (cf) DNA is prominent in COVID-19 patients, amplifies inflammation and promotes coagulopathy and immune dysfunction. We hypothesized that cf-DNA clearance by nebulised dornase alfa may reduce inflammation and improve disease outcomes. Here, we evaluated the efficacy of nebulized dornase alfa in patients hospitalised with severe COVID-19 pneumonia. METHODS: In this randomised controlled single-centre phase 2 proof-of-concept trial, we recruited adult patients admitted to hospital that exhibited stable oxygen saturation (≥94%) on supplementary oxygen and a C-reactive protein (CRP) level ≥30mg/L post dexamethasone treatment. Participants were randomized at a 3:1 ratio to receive twice-daily nebulised dornase alfa in addition to best available care (BAC) or BAC alone for seven days or until hospital discharge. A 2:1 ratio of historical controls to treated individuals (HC, 2:1) were included as the primary endpoint comparators. The primary outcome was a reduction in systemic inflammation measured by blood CRP levels over 7 days post-randomisation, or to discharge if sooner. Secondary and exploratory outcomes included time to discharge, time on oxygen, D-dimer levels, lymphocyte counts and levels of circulating cf-DNA. RESULTS: We screened 75 patients and enrolled 39 participants out of which 30 in dornase alfa arm, and 9 in BAC group. We also matched the recruited patients in the treated group (N=30) to historical controls in the BAC group (N=60). For the the primary outcome, 30 patients in the dornase alfa were compared to 69 patients in the BAC group. Dornase alfa treatment reduced CRP by 33% compared to the BAC group at 7-days (P=0.01). The dornase alfa group least squares mean CRP was 23.23 mg/L (95% CI 17.71 to 30.46) and the BAC group 34.82 mg/L (95% CI 28.55 to 42.47). A significant difference was also observed when only randomised participants were compared. Furthermore, compared to the BAC group, the chance of live discharge was increased by 63% in the dornase alfa group (HR 1.63, 95% CI 1.01 to 2.61, P=0.03), lymphocyte counts were improved (least-square mean: 1.08 vs 0.87, P=0.02) and markers of coagulopathy such as D-dimer were diminished (least-square mean: 570.78 vs 1656.96μg/mL, P=0.004). Moreover, the dornase alfa group exhibited lower circulating cf-DNA levels that correlated with CRP changes over the course of treatment. No differences were recorded in the rates and length of stay in the ICU or the time on oxygen between the groups. Dornase alfa was well-tolerated with no serious adverse events reported. CONCLUSION: In this proof-of-concept study in patients with severe COVID-19 pneumonia, treatment with nebulised dornase alfa resulted in a significant reduction in inflammation, markers of immune pathology and time to discharge. The effectiveness of dornase alfa in patients with acute respiratory infection and inflammation should be investigated further in larger trials

    Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development

    Get PDF
    Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites

    The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway

    Get PDF
    Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations

    Evolution of the endomembrane systems of trypanosomatids:conservation and specialisation

    Get PDF
    Parasite surfaces support multiple functions required for survival within their hosts, and maintenance and functionality of the surface depends on membrane trafficking. To understand the evolutionary history of trypanosomatid trafficking, where multiple lifestyles and mechanisms of host interactions are known, we examined protein families central to defining intracellular compartments and mediating transport, namely Rabs, SNAREs and RabGAPs, across all available Euglenozoa genomes. Bodonids possess a large trafficking repertoire, which is mainly retained by the Trypanosoma cruzi group, with extensive losses in other lineages, particularly African trypanosomes and phytomonads. There are no large-scale expansions or contractions from an inferred ancestor, excluding direct associations between parasitism or host range. However, we observe stepwise secondary losses within Rab and SNARE cohorts (but not RabGAPs). Major changes are associated with endosomal and late exocytic pathways, consistent with the diversity in surface proteomes between trypanosomatids and mechanisms of interaction with the host. Along with the conserved core family proteins, several lineage-specific members of the Rab (but not SNARE) family were found. Significantly, testing predictions of SNARE complex composition by proteomics confirms generalised retention of function across eukaryotes

    Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase-induced inflammation

    Get PDF
    Background Immunity decreases with age, which leads to reactivation of varicella zoster virus (VZV). In human subjects age-associated immune changes are usually measured in blood leukocytes; however, this might not reflect alterations in tissue-specific immunity. Objectives We used a VZV antigen challenge system in the skin to investigate changes in tissue-specific mechanisms involved in the decreased response to this virus during aging. Methods We assessed cutaneous immunity based on the extent of erythema and induration after intradermal VZV antigen injection. We also performed immune histology and transcriptomic analyses on skin biopsy specimens taken from the challenge site in young (65 years) subjects. Results Old human subjects exhibited decreased erythema and induration, CD4+ and CD8+ T-cell infiltration, and attenuated global gene activation at the site of cutaneous VZV antigen challenge compared with young subjects. This was associated with increased sterile inflammation in the skin in the same subjects related to p38 mitogen-activated protein kinase–related proinflammatory cytokine production (P < .0007). We inhibited systemic inflammation in old subjects by means of pretreatment with an oral small-molecule p38 mitogen-activated protein kinase inhibitor (Losmapimod; GlaxoSmithKline, Brentford, United Kingdom), which reduced both serum C-reactive protein levels and peripheral blood monocyte secretion of IL-6 and TNF-α. In contrast, cutaneous responses to VZV antigen challenge were increased significantly in the same subjects (P < .0003). Conclusion Excessive inflammation in the skin early after antigen challenge retards antigen-specific immunity. However, this can be reversed by inhibition of inflammatory cytokine production that can be used to promote vaccine efficacy and the treatment of infections and malignancy during aging

    Heidegger and Blumenberg on modernity

    Get PDF
    The debate surrounding the way in which Heidegger and Blumenberg understand the modern age is an opportunity to discuss two different approaches to history. On one hand, from Heidegger's perspective, history should be understood as starting from how Western thought related to Being, which, in metaphysical thinking, took the form of the forgetfulness of Being. Thus, the modern age represents the last stage in the process of forgetfulness of Being, which announces the moment of the rethinking of the relationship with Being by appealing to the authentic disclosure of Being. On the other hand, Blumenberg understands history as the result of the reoccupation process, which means replacing old theories with other new ones. Thus, to the historical approach it is not important to identify epochs as periods of time between two events, but to think about the discontinuities occurring throughout history. Starting from here, the modern age will be thought of not as an expression of the radicalization of the forgetfulness of Being, but as a response to the crises of medieval conceptions. For the same reason, the interpretation of history as a history of the forgetfulness of Being is considered by Blumenberg to subordinate history to an absolute principle, without taking into account its protagonists' needs and necessities

    Anti-inflammatory therapy with nebulised dornase alfa in patients with severe COVID-19 pneumonia A Randomised Clinical Trial

    Get PDF
    SARS-CoV2 infection causes severe, life-threatening pneumonia. Hyper-inflammation, coagulopathy and lymphopenia are associated with pathology and poor outcomes in these patients. Cell-free (cf) DNA is prominent in COVID-19 patients, amplifies inflammation and promotes coagulopathy and immune dysfunction. We hypothesized that cf-DNA clearance by nebulised dornase alfa may reduce inflammation and improve disease outcomes. Here, we evaluated the efficacy of nebulized dornase alfa in patients hospitalised with severe COVID-19 pneumonia. In this randomised controlled single-centre phase 2 proof-of-concept trial, we recruited adult patients admitted to hospital that exhibited stable oxygen saturation (≥94%) on supplementary oxygen and a C-reactive protein (CRP) level ≥30mg/L post dexamethasone treatment. Participants were randomized at a 3:1 ratio to receive twice-daily nebulised dornase alfa in addition to best available care (BAC) or BAC alone for seven days or until hospital discharge. A 2:1 ratio of historical controls to treated individuals (HC, 2:1) were included as the primary endpoint comparators. The primary outcome was a reduction in systemic inflammation measured by blood CRP levels over 7 days post-randomisation, or to discharge if sooner. Secondary and exploratory outcomes included time to discharge, time on oxygen, D-dimer levels, lymphocyte counts and levels of circulating cf-DNA. We screened 75 patients and enrolled 39 participants out of which 30 in dornase alfa arm, and 9 in BAC group. We also matched the recruited patients in the treated group (N=30) to historical controls in the BAC group (N=60). For the the primary outcome, 30 patients in the dornase alfa were compared to 69 patients in the BAC group. Dornase alfa treatment reduced CRP by 33% compared to the BAC group at 7-days (P=0.01). The dornase alfa group least squares mean CRP was 23.23 mg/L (95% CI 17.71 to 30.46) and the BAC group 34.82 mg/L (95% CI 28.55 to 42.47). A significant difference was also observed when only randomised participants were compared. Furthermore, compared to the BAC group, the chance of live discharge was increased by 63% in the dornase alfa group (HR 1.63, 95% CI 1.01 to 2.61, P=0.03), lymphocyte counts were improved (least-square mean: 1.08 vs 0.87, P=0.02) and markers of coagulopathy such as D-dimer were diminished (least-square mean: 570.78 vs 1656.96μg/mL, P=0.004). Moreover, the dornase alfa group exhibited lower circulating cf-DNA levels that correlated with CRP changes over the course of treatment. No differences were recorded in the rates and length of stay in the ICU or the time on oxygen between the groups. Dornase alfa was well-tolerated with no serious adverse events reported. In this proof-of-concept study in patients with severe COVID-19 pneumonia, treatment with nebulised dornase alfa resulted in a significant reduction in inflammation, markers of immune pathology and time to discharge. The effectiveness of dornase alfa in patients with acute respiratory infection and inflammation should be investigated further in larger trials
    corecore