84 research outputs found
In vivo validation of the origin of the esophageal electrocardiogram
Esophageal electrocardiography is a clinical and investigational technique that is useful for determining atrial conduction intervals, analyzing atrial rhythms and mapping conduction pathways. Although the left atrial origin of the esophageal electrocardiogram has long been implied, recently that origin has been questioned. In the present study, the origin of the esophageal deflection is defined by direct right and left atrial mapping studies performed with simultaneous esophageal electrograms obtained from three positions (high, mid and low). Seven patients with normal left atrial dimensions (group I) and five patients with left atrial enlargement (group II) underwent transseptal catheterization during the course of electrophysiologic study.In group I (normal left atrial dimensions), conduction time from the high right atrium to each of the three esophageal positions corresponded to conduction times to left atrial sites ranging from 1 to 3 em lateral to the left interatrial septum. The mid- and low esophageal conduction times were all significantly longer than conduction time to the left side of the septum (p < 0.05). In group II (enlarged left atrium), conduction times to each of the esophageal sites corresponded to conduction times to left atrial sites lying between the mid-left atrium and a point 1 em lateral to the left side of the septum. A significant trend toward longer conduction time to the mid-esophageal position than to the left septum was noted (p < 0.1). In both groups, conduction times measured with the esophageal catheter were significantly longer than conduction time to the right interatrial septum (p < 0.05).The esophageal electrogram corresponds to atrial deflections recorded within the left atrium distinct from the interatrial septum and right atrium. Esophageal electrocardiography is a valid technique for investigation of left atrial rhythms and interatrial conduction
Myocardial viability and survival in ischemic left ventricular dysfunction
The assessment of myocardial viability has been used to identify patients with coronary artery disease and left ventricular dysfunction in whom coronary-artery bypass grafting (CABG) will provide a survival benefit. However, the efficacy of this approach is uncertain.In a substudy of patients with coronary artery disease and left ventricular dysfunction who were enrolled in a randomized trial of medical therapy with or without CABG, we used single-photon-emission computed tomography (SPECT), dobutamine echocardiography, or both to assess myocardial viability on the basis of prespecified thresholds.Among the 1212 patients enrolled in the randomized trial, 601 underwent assessment of myocardial viability. Of these patients, we randomly assigned 298 to receive medical therapy plus CABG and 303 to receive medical therapy alone. A total of 178 of 487 patients with viable myocardium (37%) and 58 of 114 patients without viable myocardium (51%) died (hazard ratio for death among patients with viable myocardium, 0.64; 95% confidence interval [CI], 0.48 to 0.86; P=0.003). However, after adjustment for other baseline variables, this association with mortality was not significant (P=0.21). There was no significant interaction between viability status and treatment assignment with respect to mortality (P=0.53).The presence of viable myocardium was associated with a greater likelihood of survival in patients with coronary artery disease and left ventricular dysfunction, but this relationship was not significant after adjustment for other baseline variables. The assessment of myocardial viability did not identify patients with a differential survival benefit from CABG, as compared with medical therapy alone. (Funded by the National Heart, Lung, and Blood Institute; STICH ClinicalTrials.gov number, NCT00023595.)
Dysfunction in the βII Spectrin-Dependent Cytoskeleton Underlies Human Arrhythmia.
Background: The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked with cardiac pathologies including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction in cardiac electrical activity is not well understood, and often overlooked in the cardiac arrhythmia field. Methods and Results: Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that βII spectrin, an actin-associated molecule, is essential for the post-translational targeting and localization of critical membrane proteins in heart. βII spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/βII spectrin interaction leading to severe human arrhythmia phenotypes. Mice lacking cardiac βII spectrin display lethal arrhythmias, aberrant electrical and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, βII spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes that include the Na/Ca exchanger, RyR2, ankyrin-B, actin, and αII spectrin. Finally, we observe accelerated heart failure phenotypes in βII spectrin-deficient mice. Conclusions: Our findings identify βII spectrin as critical for normal myocyte electrical activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology
Nuggets, Pearls, and Vignettes of Master Heart Failure Clinicians
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73696/1/j.1527-5299.2001.00307.x.pd
Myocardial viability and survival in ischemic left ventricular dysfunction
BACKGROUND The assessment of myocardial viability has been used to identify patients with coronary artery disease and left ventricular dysfunction in whom coronary-artery bypass grafting (CABG) will provide a survival benefit. However, the efficacy of this approach is uncertain. METHODS In a substudy of patients with coronary artery disease and left ventricular dysfunction who were enrolled in a randomized trial of medical therapy with or without CABG, we used single-photon-emission computed tomography (SPECT), dobutamine echocardiography, or both to assess myocardial viability on the basis of pre-specified thresholds. RESULTS Among the 1212 patients enrolled in the randomized trial, 601 underwent assessment of myocardial viability. Of these patients, we randomly assigned 298 to receive medical therapy plus CABG and 303 to receive medical therapy alone. A total of 178 of 487 patients with viable myocardium (37%) and 58 of 114 patients without viable myocardium (51%) died (hazard ratio for death among patients with viable myocardium, 0.64; 95% confidence interval [CI], 0.48 to 0.86; P = 0.003). However, after adjustment for other baseline variables, this association with mortality was not significant (P = 0.21). There was no significant interaction between viability status and treatment assignment with respect to mortality (P = 0.53). CONCLUSIONS The presence of viable myocardium was associated with a greater likelihood of survival in patients with coronary artery disease and left ventricular dysfunction, but this relationship was not significant after adjustment for other baseline variables. The assessment of myocardial viability did not identify patients with a differential survival benefit from CABG, as compared with medical therapy alone.National Heart, Lung, and Blood Institute (NHLBI/NIH)[U01-HL-069009]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-069010]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-069011]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-069012]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-069012-03]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-069013]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-069015]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-070011]National Heart, Lung, and Blood Institute (NHLBI/NIH)[HL-072683]SorinAstellas HealthcareBraccoLantheus Medical ImagingMitralignRegeneRxNovartisGileadBoehringer Ingelheim Pharmaceutical
Alignment of the CMS silicon tracker during commissioning with cosmic rays
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
Commissioning and performance of the CMS pixel tracker with cosmic ray muons
This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
Performance of the CMS drift-tube chamber local trigger with cosmic rays
The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
- …