32 research outputs found

    Communal Living by Bacteria and the Pathogenesis of Urinary Tract Infections

    Get PDF
    Steven Opal reviews the phenomenon of bacterial communities and discusses the role played by bacterial communication and cooperation in host-pathogen interactions, particularly in urinary tract infection

    Use of optical mapping to sort uropathogenic Escherichia coli strains into distinct subgroups

    Get PDF
    Optical maps were generated for 33 uropathogenic Escherichia coli (UPEC) isolates. For individual genomes, the NcoI restriction fragments aligned into a unique chromosome map for each individual isolate, which was then compared with the in silico restriction maps of all of the sequenced E. coli and Shigella strains. All of the UPEC isolates clustered separately from the Shigella strains as well as the laboratory and enterohaemorrhagic E. coli strains. Moreover, the individual strains appeared to cluster into distinct subgroups based on the dendrogram analyses. Phylogenetic grouping of these 33 strains showed that 32/33 were the B2 subgroup and 1/33 was subgroup A. To further characterize the similarities and differences among the 33 isolates, pathogenicity island (PAI), haemolysin and virulence gene comparisons were performed. A strong correlation was observed between individual subgroups and virulence factor genes as well as haemolysis activity. Furthermore, there was considerable conservation of sequenced-strain PAIs in the specific subgroups. Strains with different antibiotic-resistance patterns also appeared to sort into separate subgroups. Thus, the optical maps distinguished the UPEC strains from other E. coli strains and further subdivided the strains into distinct subgroups. This optical mapping procedure holds promise as an alternative way to subgroup all E. coli strains, including those involved in infections outside of the intestinal tract and epidemic strains with distinct patterns of antibiotic resistance

    Phylogenetic Analysis and Prevalence of Urosepsis Strains of Escherichia coli Bearing Pathogenicity Island-Like Domains

    No full text
    We characterized 100 Escherichia coli urosepsis isolates from adult patients according to host compromise status by means of ribotyping, PCR phylogenetic grouping, and PCR detection of papG alleles and the virulence-related genes sfa/foc, fyuA, irp-2, aer, hly, cnf-1 and hra. We also tested these strains for copies of pap and hly and their direct physical linkage with other virulence genes in an attempt to look for pathogenicity islands (PAIs) described for the archetypal uropathogenic strains J96, CFT073, and 536. Most of the isolates belonged to E. coli phylogenetic groups B2 and D and bore papG allele II, aer, and fyuA/irp-2. papG allele II-bearing strains were more common in noncompromised patients, while papG allele-negative strains were significantly more frequent in compromised patients. Fifteen ribotypes were identified. The three archetypal strains harbored different ribotypes, and only one-third of our urosepsis strains were genetically related to one of the archetypal strains. Three and 18 strains harbored three and two copies of pap, respectively, and 5 strains harbored two copies of hly. papGIII was physically linked to hly, cnf-1, and hra (reported to be PAI II(J96)-like genetic elements) in 14% of the strains. The PAI II(J96)-like domain was inserted within pheR tRNA in 11 strains and near leuX tRNA in 3 strains. Moreover, the colocalized genes cnf-1, hra, and hly were physically linked to papGII in four strains and to no pap gene in three strains. papGII and hly (reported to be PAI I(CFT073)-like genetic elements) were physically linked in 16 strains, pointing to a PAI I(CFT073)-like domain. Three strains contained both a PAI II(J96)-like domain and a PAI I(CFTO73)-like domain. Forty-two strains harbored papGII but not hly, in keeping with the presence of a PAI II(CFT073)-like domain. Only one strain harbored a PAI I(536)-like domain (hly only), and none harbored a PAI I(J96)-like domain (papGI plus hly) or a PAI II(536)-like domain (papGIII plus hly). This study provides new data on the prevalence and variability of physical genetic linkage between pap and certain virulence-associated genes that are consistent with their colocalization on archetypal PAIs
    corecore