94 research outputs found
Coldspots or hotspots? The origin of plateau-shaped highlands on Venus
A compelling question for the terrestrial planets is the origin of the highland regions on Venus. Data on the topography, gravity signature, and surface morphology returned by the Pioneer Venus, Venera 15/16, and Magellan spacecraft represent a basis for dividing these highlands into two distinct groups: volcanic rises and plateau-shaped highlands. Volcanic rises are generally thought to be due to mantle upwellings in the form of large mantle plumes and are thus similar in origin to terrestrial hotspots. There is less agreement as to the origin of plateau-shaped highlands (PSH). Coldspot mantle downwelling can lead to the formation of a highland region under Venus conditions, and previous to Magellan some PSH (particularly W. Ishtar Terra and Ovda and Thetis Regiones) were suggested to be compressionally deformed regions of thickened crust created by mantle downwelling. A hotspot model proposes that such regions are formed by magmatism and tectonism related to the near-surface ascent of either the diapir-shaped large mantle plume or a solitary disturbance propagating up a plume conduit. The characteristics of both volcanic rises and plateau-shaped highlands on Venus and the models for their formation are briefly reviewed, and tests that may help to make clear which model best explains the plateau-shaped highlands are considered
Tessera terrain: Characteristics and models of origin
Tessera terrain consists of complexly deformed regions characterized by sets of ridges and valleys that intersect at angles ranging from orthogonal to oblique, and were first viewed in Venera 15/16 SAR data. Tesserae cover more area (approx. 15 percent of the area north of 30 deg N) than any of the other tectonic units mapped from the Venera data and are strongly concentrated in the region between longitudes 0 deg E and 150 deg E. Tessera terrain is concentrated between a proposed center of crustal extension and divergence in Aphrodite and a region of intense deformation, crustal convergence, and orogenesis in western Ishtar Terra. Thus, the tectonic processes responsible for tesserae are an important part of Venus tectonics. As part of an effort to understand the formation and evolution of this unusual terrain type, the basic characteristics of the tesserae were compared to the predictions made by a number of tectonic models. The basic characteristics of tessera terrain are described and the models and some of their basic predictions are briefly discussed
The spatial distribution of coronae on Venus
Coronae on Venus are large, generally circular surface features that have distinctive tectonic, volcanic, and topographic expressions. They range in diameter from less than 200 km to at least 1000 km. Data from the Magellan spacecraft have now allowed complete global mapping of the spatial distribution of coronae on the planet. Unlike impact craters, which show a random (i.e., Poisson) spatial distribution, the distribution of coronae appears to be nonrandom. We investigate the distribution here in detail, and explore its implications in terms of mantle convection and surface modification processes
Large aperture scanning airborne lidar
A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc
Spaceborne synthetic aperture radar: Current status and future directions. A report to the Committee on Earth Sciences, Space Studies Board, National Research Council
This report provides a context in which questions put forth by NASA's Office of Mission to Planet Earth (OMPTE) regarding the next steps in spaceborne synthetic aperture radar (SAR) science and technology can be addressed. It summarizes the state-of-the-art in theory, experimental design, technology, data analysis, and utilization of SAR data for studies of the Earth, and describes potential new applications. The report is divided into five science chapters and a technology assessment. The chapters summarize the value of existing SAR data and currently planned SAR systems, and identify gaps in observational capabilities needing to be filled to address the scientific questions. Cases where SAR provides complementary data to other (non-SAR) measurement techniques are also described. The chapter on technology assessment outlines SAR technology development which is critical not only to NASA's providing societally relevant geophysical parameters but to maintaining competitiveness in SAR technology, and promoting economic development
Individual Actin Filaments in a Microfluidic Flow Reveal the Mechanism of ATP Hydrolysis and Give Insight Into the Properties of Profilin
A novel microfluidic approach allows the analysis of the dynamics of individual actin filaments, revealing both their local ADP/ADP-Pi-actin composition and that Pi release is a random mechanism
The Copenhagen Diagnosis: Updating the World on the Latest Climate Science
The Copenhagen Diagnosis is a summary of the global warming peer reviewed science since 2007. Produced by a team of 26 scientists led by the University of New South Wales Climate Research Centre, the Diagnosis convincingly proves that the effects of global warming have gotten worse in the last three years. It is a timely update to the UN’s Intercontinental Panel on Climate Change 2007 Fourth Assessment document (IPCC AR4).
The report places the blame for the century long temperature increase on human factors and says the turning point ";must come soon";. If we are to limit warming to 2 degrees above pre-industrial values, global emissions must peak by 2020 at the latest and then decline rapidly. The scientists warned that waiting for higher levels of scientific certainty could mean that some tipping points will be crossed before they are recognized. By 2050 we will effectively need to be in a post-carbon economy if we are to avoid unlivable temperatures
Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier
The article of record as published may be found at http://dx.doi.org/10.1038/nature20136The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.USDO
Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line
Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers’ size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability
Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia
International audienc
- …