55 research outputs found
Portable Flux Tower Deployments Field Campaign Report
Contents
Acronyms and Abbreviations...................................................................... iii
1.0 Summary ....................................................... 1
2.0 Results ........................................... 1
3.0 Publications and References ................................................. 2
4.0 Lessons Learned ....................................................................
Annual, seasonal, and diel surface energy partitioning in the semiarid Sand Hills of Nebraska, USA
Study Region: The Nebraska Sand Hills consisting of four major land cover types: (1) lakes and wetlands (∼5% for both), (2) subirrigated meadows (∼10%), (3) dry valleys (∼20%), and (4) upland dunes (∼65%).
Study Focus: Examination of surface energy and water balances on multiple temporal scales with primary focus on latent heat flux (λE), and evapotranspiration (ET), to gain a better understanding of the annual, seasonal, and diel properties of surface energy partitioning among different Sand Hills ecosystems to improve regional water resource management. New Hydrological Insights for the Region: Based on surface energy and water balance measurements using Bowen ratio energy balance systems at three locations during 2004, we find a strong spatial gradient between sites in latent (λE) and sensible (H) heat flux due to differences in topography, soils, and plant community composition on all timescales. Seasonally, all land covers show the greatest λE in summer. Our results show that subirrigated meadows, dry valleys, and upland dunes allocate roughly 81%, 50%, and 41% of available energy to λE, respectively, during the growing season. The subirrigated meadow was the only cover type where cumulative annual ET surpassed cumulative annual precipitation (i.e. net loss of water to the atmosphere). Therefore, the dry valleys and upland dunes are where net groundwater recharge to the High Plains Aquifer is occurring
Downwind Odor Predictions from Four Swine Finishing Barns Using CALPUFF
A collaborative research effort by several institutions is investigating odor emissions from swine production facilities, and the impacts of those emissions on farm neighbours. Trained human receptors were used to measure the downwind odor concentrations from four tunnel ventilated swine barns near Story City, Iowa. Twenty-six measurement events were conducted between June and November 2004 and modeled using a specially coded short time-step version of CALPUFF to predict short time step durations. Source emission measurements and extensive meteorological data were collected along with ambient olfactometry analysis using the Nasal Ranger™ device (St. Croix Sensory, St. Paul MN). Approximately 64% of measured odor generally falls within the range of modeled values. Analysis of measured odor concentration and corresponding meteorology indicate that maximum ambient odor impacts occur with lower ambient temperature during non-turbulent conditions. Analysis of the data set did not yield a strong relationship directly (R2=0.33), but a regression analysis indicated that the modified CALPUFF model yielded a slope or scaling factor of 0.99, indicating overall a good relationship between model and observed. However, when the data is tested with the Spearman’s rank correlation coefficient an rs of 0.17 was calculated, indicating a poor rank correlation and was not significant (p=0.05). Statistical analysis is inconclusive as to whether the results have bias, but indicate large error in the results. Given that there were no scaling or peak to mean ratio adjustments to the model predictions, the results are very promising for predicting odors using CALPUFF
Large CO\u3csub\u3e2\u3c/sub\u3e and CH\u3csub\u3e4\u3c/sub\u3e emissions from polygonal tundra during spring thaw in northern Alaska
The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink
Permafrost landscape history shapes fluvial chemistry, ecosystem carbon balance, and potential trajectories of future change
Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice-rich moraine, and organic-rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO2 (25%) dominated. In watersheds affected by thaw-induced mass wasting, erosion of ice-rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw-induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw-induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance
A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands
Wetlands are the largest global natural methane (CH4) source, and emissions between 50 and 70° N latitude contribute 10–30% to this source. Predictive capability of land models for northern wetland CH4 emissions is still low due to limited site measurements, strong spatial and temporal variability in emissions, and complex hydrological and biogeochemical dynamics. To explore this issue, we compare wetland CH4 emission predictions from the Community Land Model 4.5 (CLM4.5-BGC) with siteto regional-scale observations. A comparison of the CH4 fluxes with eddy flux data highlighted needed changes to the model’s estimate of aerenchyma area, which we implemented and tested. The model modification substantially reduced biases in CH4 emissions when compared with CarbonTracker CH4 predictions. CLM4.5 CH4 emission predictions agree well with growing season (May–September) CarbonTracker Alaskan regional-level CH4 predictions and sitelevel observations. However, CLM4.5 underestimated CH4 emissions in the cold season (October–April). The monthly atmospheric CH4 mole fraction enhancements due to wetland emissions are also assessed using the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model coupled with daily emissions from CLM4.5 and compared with aircraft CH4 mole fraction measurements from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Both the tower and aircraft analyses confirm the underestimate of cold-season CH4 emissions by CLM4.5. The greatest uncertainties in predicting the seasonal CH4 cycle are from the wetland extent, coldseason CH4 production and CH4 transport processes. We recommend more cold-season experimental studies in highlatitude systems, which could improve the understanding and parameterization of ecosystem structure and function during this period. Predicted CH4 emissions remain uncertain, but we show here that benchmarking against observations across spatial scales can inform model structural and parameter improvements
Gap-filling eddy covariance methane fluxes:Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET)
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible
Gap-filling eddy covariance methane fluxes : Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).Peer reviewe
- …