86 research outputs found

    Bibliography

    Get PDF
    Regular use of beta2-agonists might result in increased bronchial hyper-responsiveness (BHR) and decreased forced expiratory volume in 1 sec (FEV1). It has been suggested that these possible detrimental effects are not a real deterioration of the disease, but that it might be only a transient (rebound) effect shortly after discontinuing this regular use. Moreover, these effects are thought to occur especially during short-acting and not during long-acting beta2-agonists use. The aim of this study was to invest gate whether a rebound effect (a pharmacological deterioration effect diminishing after several hours) in FEV1 and PC20 (concentration of histamine causing a 20% fall in FEV1 with regard to baseline) occurred after cessation of regular use of beta2-agonists, and whether this occurred both after short-acting and long-acting beta2-agonists. Allergic asthmatic patients (n = 134) were randomly allocated to the use of a short-acting (salbutamol), a long-acting beta2-agonist (formoterol) or placebo for 12 weeks (double-blind, double-dummy). No other asthma medication was allowed, including inhaled corticosteroids. At the start and every 4 weeks later FEV and PC20 were measured, each time at least 12 h after the last doses of study medication, which is in the possible rebound period. To investigate whether a (transient) rebound effect occurred, parameters were additionally measured at least 72 h later after discontinuation of the study medication. After 12 weeks of short-acting beta2-agonist use, a drop was seen in FEV1 from 85.6 (+/- 2.21)% predicted to 78.8 (+/- 2.9)% predicted, measured 15 h (median) after the last doses of medication. This was significantly different compared to placebo. When measured 168 h (median) later FEV1 recovered to 85.5 (+/- 2.4)% predicted, comparable to baseline. PC20 decreased with -1.17 (+/- 0.44) doubling dose after 12 weeks of short-acting beta2-agonist use, measured 15 h after the last doses of medication, which was significantly different compared to placebo. However, 168 h later PC20 recovered slightly with +0.55 (+/- 0.34) doubling dose, but this value was still lower compared to placebo. In contrast, during long-acting beta2-agonist and placebo use no significant changes were seen. In conclusion, the use of short-acting beta2-agonists resulted in a transient (rebound) effect in FEV while the effects on PC20 may point to a real deterioration of the disease. Long-acting beta2-agonist and placebo use showed no changes.We conclude that a mono-therapy of short-acting and not of long-acting beta2-agonists might have deleterious effects in asthma

    Animation in relational information visualization

    Get PDF
    In order to be able to navigate in the world without memorizing each detail, the human brain builds a mental map of its environment. The mental map is a distorted and abstracted representation of the real environment. Unimportant areas tend to be collapsed to a single entity while important landmarks are overemphasized. When working with visualizations of data we build a mental map of the data which is closely linked to the particular visualization. If the visualization changes significantly due to changes in the data or the way it is presented we loose the mental map and have to rebuild it from scratch. The purpose of the research underlying this thesis was to investigate and devise methods to create smooth transformations between visualizations of relational data which help users in maintaining or quickly updating their mental map

    Stopping long-acting beta2-agonists (LABA) for adults with asthma well controlled by LABA and inhaled corticosteroids.

    Get PDF
    BACKGROUND: Poorly controlled asthma often leads to preventable exacerbations that require additional medications, as well as unscheduled hospital and clinic visits.Long-acting beta2-agonists (LABA) are commonly given to adults with asthma whose symptoms are not well controlled by inhaled corticosteroids (ICS). US and UK regulators have issued warnings for LABA in asthma, and now recommend they be used "for the shortest duration of time required to achieve control of asthma symptoms and discontinued, if possible, once asthma control is achieved". OBJECTIVES: To compare cessation of long-acting beta2-agonists (LABA) versus continued use of LABA/inhaled corticosteroids (LABA/ICS) for adults whose asthma is well controlled, and to determine whether stopping LABA:1. results in loss of asthma control or deterioration in quality of life;2. increases the likelihood of asthma attacks or 'exacerbations'; or3. increases or decreases the likelihood of serious adverse events of any cause. SEARCH METHODS: We searched the Cochrane Airways Group Specialised Register (CAGR), www.ClinicalTrials.gov, www.who.int/ictrp/en/, reference lists of primary studies and existing reviews and manufacturers' trial registries (GlaxoSmithKline (GSK) and AstraZeneca). We searched all databases from their inception to April 2015, and we imposed no restriction on language of publication. SELECTION CRITERIA: We looked for parallel randomised controlled trials (RCTs) of at least eight weeks' duration, in which adults whose asthma was well controlled by any dose of ICS+LABA combination therapy were randomly assigned to (1) step-down therapy to ICS alone versus (2) continuation of ICS and LABA. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all records identified by the search strategy. We used an Excel extraction tool to manage searches, document reasons for inclusion and exclusion and extract descriptive and numerical data from trials meeting inclusion criteria.Prespecified primary outcomes were (1) exacerbations requiring oral steroids, (2) asthma control and (3) all-cause serious adverse events. MAIN RESULTS: Six randomised, double-blind studies between 12 and 24 weeks' long met the inclusion criteria. Five studies contributed data to the meta-analysis, assigning 2781 people with stable asthma to the comparison of interest. The definition of stable asthma and inclusion criteria varied across studies, and Global Initiative for Asthma (GINA) criteria were not used. Risk of bias across studies was generally low, and most evidence was rated as moderate quality.Stopping LABA might increase the number of people having exacerbations and requiring oral corticosteroids (odds ratio (OR) 1.74, 95% confidence interval (CI) 0.83 to 3.65; participants = 1257; studies = 4), although the confidence intervals did not exclude the possibility that stopping LABA was beneficial; over 17 weeks, 19 people per 1000 who continued their LABA had an exacerbation, compared with 32 per 1000 when LABA were stopped (13 more per 1000, 95% CI 3 fewer to 46 more).People who stopped LABA had worse scores on the Asthma Control Questionnaire (mean difference (MD) 0.24, 95% CI 0.13 to 0.35; participants = 645; studies = 3) and on measures of asthma-related quality of life (standardised mean difference (SMD) 0.36, 95% CI 0.15 to 0.57; participants = 359; studies = 2) than those who continued LABA, but the effects were not clinically relevant.Too few events occurred for investigators to tell whether stopping LABA has a greater effect on serious adverse events compared with continuing LABA+ICS (OR 0.82, 95% CI 0.28 to 2.42; participants = 1342; studies = 5), and no study reported exacerbations requiring an emergency department visit or hospitalisation as a separate outcome. Stopping LABA may result in fewer adverse events of any kind compared with continuing, although the effect was not statistically significant (OR 0.83, 95% CI 0.66 to 1.05; participants = 1339; studies = 5), and stopping LABA made people more likely to withdraw from participation in research studies (OR 1.95, 95% CI 1.47 to 2.58; participants = 1352; studies = 5). AUTHORS' CONCLUSIONS: This review suggests that stopping LABA in adults who have stable asthma while they are taking a combination of LABA and ICS inhalers may increase the likelihood of asthma exacerbations that require treatment with oral corticosteroids, but this is not certain. Stopping LABA may slightly reduce asthma control and quality of life, but evidence was insufficient to show whether this had an effect on important outcomes such as serious adverse events and exacerbations requiring hospital admission, and longer trials are warranted. Trialists should include patient-important outcomes such as asthma control and quality of life and should use validated measurement tools. Definitions of exacerbations should be provided

    Stopping long-acting beta2-agonists (LABA) for children with asthma well controlled on LABA and inhaled corticosteroids.

    Get PDF
    BACKGROUND: Asthma is the most common chronic medical condition among children and is one of the most common causes of hospitalisation and medical visits. Poorly controlled asthma often leads to preventable exacerbations that require additional medications, hospital stays, or treatment in the emergency department.Long-acting beta2-agonists (LABA) are the preferred add-on treatment for children with asthma whose symptoms are not well controlled on inhaled corticosteroids (ICS). The US Food and Drug Administration has issued a 'black box' warning for LABA in asthma, and now recommends that they be used "for the shortest duration of time required to achieve control of asthma symptoms and discontinued, if possible, once asthma control is achieved". OBJECTIVES: To compare the effect on asthma control and adverse effects of stepping down to inhaled corticosteroids (ICS)-only therapy versus continuing ICS plus LABA in children whose asthma is well controlled on combined ICS and LABA therapy. SEARCH METHODS: We searched the Cochrane Airways Group Specialised Register, and also searched www.ClinicalTrials.gov, www.who.int/ictrp/en/, reference lists of primary studies and existing reviews, and manufacturers' trial registries (GlaxoSmithKline and AstraZeneca). We searched all databases from their inception to the present, and imposed no restriction on language of publication. The most recent search was done in April 2015. SELECTION CRITERIA: We looked for parallel randomised controlled trials of at least eight weeks' duration, available as published full text, abstract only, or unpublished data. We excluded studies including participants with other chronic respiratory comorbidities (for example bronchiectasis).We looked for studies in which children (18 years or younger) whose asthma was well controlled on any dose of ICS and LABA combination therapy were randomised to: a) step-down therapy to ICS alone or b) continued use of ICS and LABA.We included any dose of LABA (formoterol, salmeterol, vilanterol) and any dose of ICS (beclomethasone, budesonide, ciclesonide, mometasone, flunisolide, fluticasone propionate, fluticasone furoate, triamcinolone) delivered in a combination inhaler or in separate inhalers. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all records identified in the searches. We used a data extraction tool in Microsoft Excel to manage searches and document reasons for inclusion and exclusion, and to extract descriptive and numerical data from trials meeting the inclusion criteria.The prespecified primary outcomes were exacerbations requiring oral steroids, asthma control, and all-cause serious adverse events. MAIN RESULTS: Despite conducting extensive searches of electronic databases, trial registries and manufacturers' websites we identified no trials matching the inclusion criteria.After removing duplicates, we screened 1031 abstracts, and assessed 43 full-text articles for inclusion. We identified several adult studies, which will be summarised in a separate review (Ahmad 2014). The most common reasons for exclusion after viewing full texts were 'wrong comparison' (n = 22) and 'adult population' (n = 18).Some adult studies recruited adolescents from age 15, but none reported data separately for those under 18. AUTHORS' CONCLUSIONS: There is currently no evidence from randomised trials to inform the discontinuation of LABAs in children once asthma control is achieved with ICS plus LABA. It is disappointing that such an important issue has not been studied, and a randomised double-blind trial recruiting children who are controlled on ICS plus LABA is warranted. The study should be large enough to assess children of different ages, and to measure the important safety and efficacy outcomes suggested in this review over at least six months.The only randomised evidence for stopping LABA has been conducted in adults; it will be summarised in a separate review

    Safety assessment of inhaled xylitol in mice and healthy volunteers

    Get PDF
    BACKGROUND: Xylitol is a 5-carbon sugar that can lower the airway surface salt concentration, thus enhancing innate immunity. We tested the safety and tolerability of aerosolized iso-osmotic xylitol in mice and human volunteers. METHODS: This was a prospective cohort study of C57Bl/6 mice in an animal laboratory and healthy human volunteers at the clinical research center of a university hospital. Mice underwent a baseline methacholine challenge, exposure to either aerosolized saline or xylitol (5% solution) for 150 minutes and then a follow-up methacholine challenge. The saline and xylitol exposures were repeated after eosinophilic airway inflammation was induced by sensitization and inhalational challenge to ovalbumin. Normal human volunteers underwent exposures to aerosolized saline (10 ml) and xylitol, with spirometry performed at baseline and after inhalation of 1, 5, and 10 ml. Serum osmolarity and electrolytes were measured at baseline and after the last exposure. A respiratory symptom questionnaire was administered at baseline, after the last exposure, and five days after exposure. In another group of normal volunteers, bronchoalveolar lavage (BAL) was done 20 minutes and 3 hours after aerosolized xylitol exposure for levels of inflammatory markers. RESULTS: In naïve mice, methacholine responsiveness was unchanged after exposures to xylitol compared to inhaled saline (p = 0.49). There was no significant increase in Penh in antigen-challenged mice after xylitol exposure (p = 0.38). There was no change in airway cellular response after xylitol exposure in naïve and antigen-challenged mice. In normal volunteers, there was no change in FEV1 after xylitol exposures compared with baseline as well as normal saline exposure (p = 0.19). Safety laboratory values were also unchanged. The only adverse effect reported was stuffy nose by half of the subjects during the 10 ml xylitol exposure, which promptly resolved after exposure completion. BAL cytokine levels were below the detection limits after xylitol exposure in normal volunteers. CONCLUSIONS: Inhalation of aerosolized iso-osmotic xylitol was well-tolerated by naïve and atopic mice, and by healthy human volunteers

    Inhaled steroids with and without regular salmeterol for asthma: serious adverse events.

    Get PDF
    BACKGROUND: Epidemiological evidence has suggested a link between use of beta₂-agonists and increased asthma mortality. Much debate has surrounded possible causal links for this association, and whether regular (daily) long-acting beta₂-agonists (LABAs) are safe, particularly when used in combination with inhaled corticosteroids (ICSs). This is an update of a Cochrane Review that now includes data from two large trials including 11,679 adults and 6208 children; both were mandated by the US Food and Drug Administration (FDA).  OBJECTIVES: To assess risks of mortality and non-fatal serious adverse events (SAEs) in trials that randomised participants with chronic asthma to regular salmeterol and ICS versus the same dose of ICS. SEARCH METHODS: We identified randomised trials using the Cochrane Airways Group Specialised Register of trials. We checked websites of clinical trials registers for unpublished trial data. We also checked FDA submissions in relation to salmeterol. The date of the most recent search was 10 October 2018. SELECTION CRITERIA: We included parallel-design randomised trials involving adults, children, or both with asthma of any severity who were randomised to treatment with regular salmeterol and ICS (in separate or combined inhalers) versus the same dose of ICS of at least 12 weeks in duration. DATA COLLECTION AND ANALYSIS: We conducted the review according to standard procedures expected by Cochrane. We obtained unpublished data on mortality and SAEs from the sponsors, from ClinicalTrials.gov, and from FDA submissions. We assessed our confidence in the evidence according to current GRADE recommendations. MAIN RESULTS: We have included in this review 41 studies (27,951 participants) in adults and adolescents, along with eight studies (8453 participants) in children. We judged that the overall risk of bias was low for all-cause events, and we obtained data on SAEs from all study authors. All except 542 adults (and none of the children) were given salmeterol and fluticasone in the same (combination) inhaler.DeathsEleven of a total of 14,233 adults taking regular salmeterol and ICS died, as did 13 of 13,718 taking regular ICS at the same dose. The pooled Peto odds ratio (OR) was 0.80 (95% confidence interval (CI) 0.36 to 1.78; participants = 27,951; studies = 41; I² = 0%; moderate-certainty evidence). In other words, for every 1000 adults treated for 25 weeks, one death occurred among those on ICS alone, and the corresponding risk among those taking salmeterol and ICS was also one death (95% CI 0 to 2 deaths).No children died, and no adults or children died of asthma, so we remain uncertain about mortality in children and about asthma mortality in any age group.Non-fatal serious adverse eventsA total of 332 adults receiving regular salmeterol with ICS experienced a non-fatal SAE of any cause, compared to 282 adults receiving regular ICS. The pooled Peto OR was 1.14 (95% CI 0.97 to 1.33; participants = 27,951; studies = 41; I² = 0%; moderate-certainty evidence). For every 1000 adults treated for 25 weeks, 21 adults on ICS alone had an SAE, and the corresponding risk for those on salmeterol and ICS was 23 adults (95% CI 20 to 27).Sixty-five of 4229 children given regular salmeterol with ICS suffered an SAE of any cause, compared to 62 of 4224 children given regular ICS. The pooled Peto OR was 1.04 (95% CI 0.73 to 1.48; participants = 8453; studies = 8; I² = 0%; moderate-certainty evidence). For every 1000 children treated for 23 weeks, 15 children on ICS alone had an SAE, and the corresponding risk for those on salmeterol and ICS was 15 children (95% CI 11 to 22).Asthma-related serious adverse eventsEighty and 67 adults in each group, respectively, experienced an asthma-related non-fatal SAE. The pooled Peto OR was 1.15 (95% CI 0.83 to 1.59; participants = 27,951; studies = 41; I² = 0%; low-certainty evidence). For every 1000 adults treated for 25 weeks, five receiving ICS alone had an asthma-related SAE, and the corresponding risk among those on salmeterol and ICS was six adults (95% CI 4 to 8).Twenty-nine children taking salmeterol and ICS and 23 children taking ICS alone reported asthma-related events. The pooled Peto OR was 1.25 (95% CI 0.72 to 2.16; participants = 8453; studies = 8; I² = 0%; moderate-certainty evidence). For every 1000 children treated for 23 weeks, five receiving an ICS alone had an asthma-related SAE, and the corresponding risk among those receiving salmeterol and ICS was seven children (95% CI 4 to 12). AUTHORS' CONCLUSIONS: We did not find a difference in the risk of death or serious adverse events in either adults or children. However, trial authors reported no asthma deaths among 27,951 adults or 8453 children randomised to regular salmeterol and ICS or ICS alone over an average of six months. Therefore, the risk of dying from asthma on either treatment was very low, but we remain uncertain about whether the risk of dying from asthma is altered by adding salmeterol to ICS.Inclusion of new trials has increased the precision of the estimates for non-fatal SAEs of any cause. We can now say that the worst-case estimate is that at least 152 adults and 139 children must be treated with combination salmeterol and ICS for six months for one additional person to be admitted to the hospital (compared to treatment with ICS alone). These possible risks still have to be weighed against the benefits experienced by people who take combination treatment.However more than 90% of prescribed treatment was taken in the new trials, so the effects observed may be different from those seen with salmeterol in combination with ICS in daily practice

    Regular treatment with formoterol and an inhaled corticosteroid versus regular treatment with salmeterol and an inhaled corticosteroid for chronic asthma: serious adverse events.

    Get PDF
    BACKGROUND: Asthma is characterised by chronic inflammation of the airways and recurrent exacerbations with wheezing, chest tightness, and cough. Treatment with inhaled steroids and bronchodilators can result in good control of symptoms, prevention of further morbidity, and improved quality of life. However, an increase in serious adverse events with the use of both regular formoterol and regular salmeterol (long-acting beta₂-agonists) compared with placebo for chronic asthma has been demonstrated in previous Cochrane Reviews. This increase was statistically significant in trials that did not randomise participants to an inhaled corticosteroid, but not when formoterol or salmeterol was combined with an inhaled corticosteroid. The confidence intervals were found to be too wide to ensure that the addition of an inhaled corticosteroid renders regular long-acting beta₂-agonists completely safe; few participants and insufficient serious adverse events in these trials precluded a definitive decision about the safety of combination treatments. OBJECTIVES: To assess risks of mortality and non-fatal serious adverse events in trials that have randomised patients with chronic asthma to regular formoterol and an inhaled corticosteroid versus regular salmeterol and an inhaled corticosteroid. SEARCH METHODS: We searched the Cochrane Airways Register of Trials, CENTRAL, MEDLINE, Embase, and two trial registries to identify reports of randomised trials for inclusion. We checked manufacturers' websites and clinical trial registers for unpublished trial data, as well as Food and Drug Administration (FDA) submissions in relation to formoterol and salmeterol. The date of the most recent search was  24 February 2021. SELECTION CRITERIA: We included controlled clinical trials with a parallel design, recruiting patients of any age and severity of asthma, if they randomised patients to treatment with regular formoterol versus regular salmeterol (each with a randomised inhaled corticosteroid) and were of at least 12 weeks' duration. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion in the review, extracted outcome data from published papers and trial registries, and applied GRADE rating for the results. We sought unpublished data on mortality and serious adverse events from study sponsors and authors. The primary outcomes were all cause mortality and non-fatal serious adverse events. We chose not to calculate an average result from all the formulations of formoterol and inhaled steroid, as the doses and delivery devices are too diverse to assume a single class effect. MAIN RESULTS: Twenty-one studies in 11,572 adults and adolescents and two studies in 723 children met the eligibility criteria of the review. No data were available for two studies; therefore these were not included in the analysis. Among adult and adolescent studies, seven compared formoterol and budesonide to salmeterol and fluticasone (N = 7764), six compared formoterol and beclomethasone to salmeterol and fluticasone (N = 1923), two compared formoterol and mometasone to salmeterol and fluticasone (N = 1126), two compared formoterol and fluticasone to salmeterol and fluticasone (N = 790), and one compared formoterol and budesonide to salmeterol and budesonide (N = 229). In total, five deaths were reported among adults, none of which was thought to be related to asthma. The certainty of evidence for all-cause mortality was low, as there were not enough deaths to permit any precise conclusions regarding the risk of mortality on combination formoterol versus combination salmeterol. In all, 201 adults reported non-fatal serious adverse events. In studies comparing formoterol and budesonide to salmeterol and fluticasone, there were 77 in the formoterol arm and 68 in the salmeterol arm (Peto odds ratio (OR) 1.14, 95% confidence interval (CI) 0.82 to 1.59; 5935 participants, 7 studies; moderate-certainty evidence). In the formoterol and beclomethasone studies, there were 12 adults in the formoterol arm and 13 in the salmeterol arm with events (Peto OR 0.94, 95% CI 0.43 to 2.08; 1941 participants, 6 studies; moderate-certainty evidence). In the formoterol and mometasone studies, there were 18 in the formoterol arm and 11 in the salmeterol arm (Peto OR 1.02, 95% CI 0.47 to 2.20; 1126 participants, 2 studies; moderate-certainty evidence). One adult in the formoterol and fluticasone studies in the salmeterol arm experienced an event (Peto OR 0.05, 95% CI 0.00 to 3.10; 293 participants, 2 studies; low-certainty evidence). Another adult in the formoterol and budesonide compared to salmeterol and budesonide study in the formoterol arm had an event (Peto OR 7.45, 95% CI 0.15 to 375.68; 229 participants, 1 study; low-certainty evidence). Only 46 adults were reported to have experienced asthma-related serious adverse events. The certainty of the evidence was low to very low due to the small number of events and the absence of independent assessment of causation. The two studies in children compared formoterol and fluticasone to salmeterol and fluticasone. No deaths and no asthma-related serious adverse events were reported in these studies. Four all-cause serious adverse events were reported: three in the formoterol arm, and one in the salmeterol arm (Peto OR 2.72, 95% CI 0.38 to 19.46; 548 participants, 2 studies; low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, for both adults and children, evidence is insufficient to show whether regular formoterol in combination with budesonide, beclomethasone, fluticasone, or mometasone has a different safety profile from salmeterol in combination with fluticasone or budesonide. Five deaths of any cause were reported across all studies and no deaths from asthma; this information is insufficient to permit any firm conclusions about the relative risks of mortality on combination formoterol in comparison to combination salmeterol inhalers. Evidence on all-cause non-fatal serious adverse events indicates that there is probably little to no difference between formoterol/budesonide and salmeterol/fluticasone inhalers. However events for the other formoterol combination inhalers were too few to allow conclusions. Only 46 non-fatal serious adverse events were thought to be asthma related; this small number in addition to the absence of independent outcome assessment means that we have very low confidence for this outcome. We found no evidence of safety issues that would affect the choice between salmeterol and formoterol combination inhalers used for regular maintenance therapy by adults and children with asthma
    corecore