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Abstract

In order to be able to navigate in the world without memorizing each detail, the human brain builds

a mental map of its environment. The mental map is a distorted and abstracted representation of

the real environment. Unimportant areas tend to be collapsed to a single entity while important

landmarks are overemphasized. When working with visualizations of data we build a mental map

of the data which is closely linked to the particular visualization. If the visualization changes

significantly due to changes in the data or the way it is presented we loose the mental map and have

to rebuild it from scratch. The purpose of the research underlying this thesis was to investigate and

devise methods to create smooth transformations between visualizations of relational data which

help users in maintaining or quickly updating their mental map.
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Introduction

The purpose of visualization is to communicate information, either between humans, or between

computers and humans. Computers store and process information encoded as abstract numbers.

Humans, however, prefer to perceive information in the form of two or three dimensional images.

Visualization is the art of encoding data which is stored in a computer into images which make

the semantics of the data easily accessible for humans. Information can either represent real world

objects or abstract concepts. In the case of real world objects, we usually have a number of obvious

and intuitive ways of visualizing the data. We can use a picture of the actual object or a more

abstract drawing of the referenced concept, whichever is appropriate depending on the individual

application. Figure 1.1 shows an example of visualizations of a real world object. The data we

want to visualize is a car. Depending on the application, we can represent it with a photo of the

car, as shown in figure 1.1.1, or in cases where details do not matter as much by a more abstract

representation, as for example shown in figure 1.1.2.

1 2

Figure 1.1: Data referencing real world objects can be visualized by displaying a graphical representation of
the object. Depending on the application various degrees of abstraction are possible.

In the context of this thesis we are mainly interested in visualizations of abstract data. When

dealing with purely abstract concepts we usually do not have an intuitive, obvious graphical repre-
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sentation that we can use to display the data. We rather have to encode the information by using a

graphicalmetaphor. Figure 1.2 gives two examples for this case. In figure 1.2.1 we see graphical

representations of human emotions; in figure 1.2.2 we see a graphical representation of the call-

relationships between modules of a computer program. The modules are represented by boxes and

the call-relationships between modules are visualized by lines connecting the boxes.

1 2

Figure 1.2: Data referencing abstract concepts such as emotions (1) or relations between data items (2) can
be graphically displayed by using metaphors.

The options we have for creating a visualization do not only depend on the data, but also on

the media on which we choose to create the visualization. The most basic devices for creating

visualizations are pen and paper. They allow us to display data using arbitrary two-dimensional

shapes which can be filled by a texture and positioned arbitrarily. This freedom is limited by the

dimensions of the paper. In many situations, nowadays, we use computers and monitors rather than

paper to display information. On a computer monitor we have one more degree of freedom: we

can use the ability of a monitor to display images fast enough to createanimations. An animation

is a sequence of images that is characterized by subtle but highly structured changes between con-

secutive frames over space and over time. In the human brain these changes create the illusion of

movement of the corresponding objects on the screen.

In this thesis we investigate methods for creating animations which improve the quality of

visualizations of relational data in “dynamic environments”; this is, environments which contain

data that is subject to modifications or data with changing graphical representations. Relational

data is most commonly encoded in the form of a graph. A graphG = (V,E) consists of a set of

nodesV representing the data items and a setE of edges describing the relationships between the

data items. In visualizations of graphs, each node is usually displayed as a graphical object such as a

circle, rectangle, polygon, or an image. Edges are usually drawn as straight or curved line segments
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connecting the nodes of the graph. Figure 1.2.2 shows a typical example of a visualization of a

graph.

In many applications graphs are not static but change their structure and layout according to

user and application actions.

If nodes or edges are dynamically added to or removed from the graph, the drawing of the

graph has to be updated. In order to fulfill certain aesthetic criteria, such modification can make it

necessary to change the layout of large parts of the graph.

Similar problems arise in systems which are able to visualize and navigate in clustered graphs.

Collapsing and expanding clusters can make it necessary to compute a new drawing to accommo-

date the changes.

Further, it is often desirable to generate different drawings, which emphasize particular aspects

of the same underlying graph. Figure 1.3 shows an example. The graph represents dataflow in-

Figure 1.3: Two different drawings of the same graph. While the first drawing shows the hierarchical order
of the nodes, the second drawing emphasizes how nodes are connected to each other.

formation in an intelligent telecommunication network. The drawing on the left side emphasizes

the hierarchical structure of the dataflow. It is easy to see where data enters the system and how

it proceeds downwards through the system. In contrast, the drawing on the right side emphasizes

which parts of the network communicate with which other parts of the network. It is easy to identify

tightly connected groups of nodes in network.

“Preserving the mental map” between changes to the drawings of graphs has been identified

to be crucial for the usability of a system [8]. There are two possible approaches to this problem:

either use graph drawing algorithms that try to minimize changes [13, 31, 32], or to communicate

the changes in the form of an animation [43, 56, 119], that is, a smooth transition from the old

drawing to the new drawing.
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While specialized animation algorithms, for example [128], work quite well in practice, general

animation techniques tend to fail to actually improve usability in many situations. Figure 1.4 shows

an example of a bad animation1.

1 2 3

4 5 6

7 8 9

Figure 1.4: Example of a bad animation. The initial positions of the nodes are shown in image (1). Their
target positions are shown in image (9). The remaining images show snapshots of a possible animation from
the initial to the target drawing. In image (5) the graph is collapsed to a single point making it difficult to
follow individual node movements.

An easier to follow, and therefore better, way of moving the nodes to their target positions is

conceivable for this example. Figure 1.5 shows a possible better animation for the same initial and

target drawings of the graph. We concern ourselves in this thesis mainly with investigating ways of

computing good animations between visualizations of abstract relational data.

1All examples, in the form of Quicktime (TM) movies, are included on the CD attached to this thesis. If this thesis is
viewed on a computer screen using an appropriate reader such as Acrobat Reader (TM) the examples can be watched by
clicking on the image. Quicktime Player (TM) can be downloaded free of charge fromhttp://www.apple.com/
quicktime/download/ ; Acrobat Reader (TM) can be downloaded free of charge fromhttp://www.adobe.
com/products/acrobat/readstep.html

http://www.apple.com/quicktime/
http://www.adobe.com/products/acrobat/
http://www.apple.com/quicktime/download/
http://www.apple.com/quicktime/download/
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
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1 2 3

4 5 6

7 8 9

Figure 1.5: Example of a better animation for the same initial and target drawings as in figure 1.4. Instead
of moving the nodes on a straight line from the initial to the target positions the nodes of the graph perform a
rotation around the center of the graph. As the structure of the graph is maintained during the animation the
movements are much easier to follow.

1.1 Contribution of this Thesis

No systematic research has been undertaken previously to investigate the use and properties of an-

imations in relational information visualization. As the first attempt in this area, we introduce a

general set of fundamental definitions which can be used to formally specify and evaluate anima-

tion methods for information visualization applications. Based on this framework of definitions we

derive criteria and measures which enable us to compare the quality of different animation methods.

We further propose and evaluate different algorithms for computing animations between visualiza-

tions of relational data. In this context we:

• Introduce a formal model describing animations.

• Introduce informal and formal criteria and measures for evaluating the quality of animations.

• Introduce a general framework for specifying and implementing animation methods.
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• Present new approaches to automatically compute animations from given initial and target

drawings of relational data. These approaches include:

– an orthogonal interpolation method,

– a classical force directed method,

– a O(n log n) time force directed method,

– an animation method that is based on linear regression analysis,

– and a method based on cluster analysis techniques.

• We develop a benchmark suite for graph animation methods and evaluate the proposed ani-

mation methods, as well as existing animation methods, on the benchmark data.

The algorithms proposed in this thesis were implemented as a Java package and are publicly

available for third parties to incorporate in their information visualization tools. DSTO Australia,

which supported the research underlying this thesis, integrated the software in the InVision [84]

information visualization tool.

Some of the results presented in this thesis have been published in [44, 45, 46].

1.2 Research Methodology

There is strong evidence that animation in user interfaces can help people to interact more efficiently

with information visualization systems [10, 28]. There is further a common agreement on the con-

jecture that this is also true for the special case of systems which visualize dynamically changing

relational information, and some graph drawing tools have actually implemented some naive an-

imation methods. However, so far, no formal model for animations of relational information has

existed and no comparative assessment of such animation methods has been performed. The fact

that this is the first systematic work in the area of animations of relational information had several

consequences for our research methodology.

We started by developing a basic formal model which allows us to formulate the problem of an-

imating relational information visualizations, as well as possible solutions, in a systematic manner.

In this context we identified a set of criteria which we believe is suitable for comparing the quality

of different animation methods. These criteria are based on well established theories and empirical

results in the areas of graph drawing (section 2.2), visual perception (section 2.4), and animation
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(section 2.3), as well as intuition and introspection of researchers in information visualization. A

systematic evaluation and ranking of these criteria is a non-trivial problem and requires thorough

HCI studies. The lack of precedent research in animations in relational information visualization,

however, implies that we need to explore the solution space of the graph animation problem first.

We nevertheless regard a systematic evaluation and ranking of quality criteria as a necessary step

for further research in this area.

We derived mathematical formulations for the criteria which determine the quality of animations

where possible. This allows an analytical discussion of proposed and existing animation methods.

However, a purely analytical evaluation of animation methods is not without problems. Some of the

methods proposed in this thesis are mathematically too complex to be analytically accessible. For

the force directed animation methods in chapter 5, for example, the path of the nodes of the graph

are only given indirectly as the solution to a set of non-linear differential equations which is not

analytically solvable. It thus seemed necessary also to be able to evaluate the quality of animation

methods empirically.

The lack of precedent research implies the lack of established test data for empirical work.

Further, random data is clearly not suitable. We have thus developed a suit of benchmark tests. The

benchmark suit is based on real life situations where animation might be used, as well as especially

challenging animation problems. This benchmark suit is introduced in section 3.4.

The animation methods introduced in this thesis, in the majority of cases, try to explicitly opti-

mize one or several quality criteria. Our evaluation methodology is thus as follows. We analytically

discuss each method in respect to all criteria where possible. We further apply each method to

our benchmark suit. During the benchmark tests we record the achieved values for our criteria.

This enables us to discuss properties of animation methods which are not analytically accessible.

By watching the animation and comparing the subjective impression to the recorded measures, we

further gain insight in the adequacy and suitability of our set of criteria.

1.3 Structure of this Thesis

The thesis is organized in the following way:

• In chapter 2 we give an extensive overview of areas which are related to or underlying this

thesis.
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• In chapter 3 we introduce a model for graph animations which we subsequently use to for-

mally describe animation methods. We also give a set of informal and formal criteria and

measures which can be used to compare the quality of graph animation methods. We further

define a suit of benchmark tests which allows an empirical evaluation of animation methods.

• In chapters 4, 5, and 6 we develop various methods of computing graph animations and eval-

uate the quality of these animation methods with regard to our measures and our benchmark

suit.

• We close the thesis with a critical and comparative discussion of our results in chapter 7. This

discussion leads to a set of guidelines for the use of animation methods in graph drawing

environments. We also propose possible directions of future research.



C H A P T E R 2

Background

In this chapter we introduce important areas which are underlying or related to this thesis. They

form the foundation on which the thesis is built and from which it draws its motivation.

2.1 Visualization

“ A picture says a 1000 words ”

This popular proverb refers to the fact that humans prefer to perceive information in visual form.

Using images, it is possible to communicate large amounts of data in a relatively short time. For

example, we need much more time to read a description of a car, such as the one displayed in figure

2.1.1, than we need to get the same amount of information by looking at the picture. This effect is

even stronger in figure 2.1.2. After looking at the picture of a person we are able to recognize this

1 2

Figure 2.1: A picture says a 1000 words. To communicate the same information in the form of a textual
description we need much more time while achieving less accuracy.

person in a different context with high probability. To give a textual description of a person which
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allows us to recognize this person is almost impossible. In criminal investigations, for example,

phantom images are created by experts from textual descriptions to make it easier for the public to

identify possible suspects.

Visualizations are further used to communicate information in situations where no common

language background exists, for examples on signs in international airports showing the way to

customs, toilets, and ticket counters. A famous and rather unusual application of visualization is

the attempt of the Planetary Society to send a message communicating information about the planet

Earth to extra-terrestrial intelligent beings. As no common textual basis exists in this case, Carl

Sagan, who designed the message tried to visualize as much information as possible assuming as

little common background as possible. The result, in the form of a plaque which was attached to

the Pioneer 10 and 11 spacecrafts, is shown in figure 2.2.

The aim of information visualization is to automatically transform abstract data into pictures.

In contrast to the examples in figure 2.1 abstract information has no immediate non-textual visual

equivalent. Examples of this kind of information are stock market data, call-relations between

software modules in a program, social structures in a company, time-tables, and statistics of all

kinds. To be able to visualize these types of data we have to use a graphicalmetaphor. That is,

information has to be encoded using graphical objects which do not necessarily have an immediate

relation to the data they represent. Figure 2.3 shows two examples where metaphors are used to

visualize abstract data. The data items visualized in figure 2.3.1 are represented by the slices of a

disc. The value of each data item corresponds to the size of its associated slice of the disc. It is very

easy to judge the minimum, maximum, or variance of the data from the image. In figure 2.3.2 we

see the visualization of the results of a chemical experiment. Two measuring methods are applied

to various chemicals and the quality of each method is encoded using the height of a bar. It is very

easy to see how the methods perform compared to each other and compared over various elements

by looking at the visualization.

Designing metaphors is not an easy task. The visualization should correspond to the data in

an intuitive way. Furthermore, the metaphor should support any “meta-information” that is to be

communicated. Such meta-information can be how data items compare to each other, or how they

are related.

We are accustomed to automatically categorizing objects by size. Encoding data values as pie-

slices or bars, as we have seen in figure 2.3, is therefore a very intuitive and powerful method

of visualization. However, which form of metaphor is appropriate in any individual application
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Figure 2.2: The Pioneer plaque was designed by Dr. Carl Sagan, one of the founders and first president
of the Planetary Society, and drawn by his wife, Linda Salzman Sagan. On the plaque stand a human man
and woman, the man’s hand raised in a gesture of good will. The outline of the man and woman were
determined from results of a computerized analysis of the average human. The key to translating the plaque is
understanding the breakdown of hydrogen, the most common element in the universe. Hydrogen is illustrated
in the upper left-hand corner of the plaque in schematic form and shows the hyperfine transition of neutral
atomic hydrogen. A silhouette of the spacecraft, the planets in our solar system, and the position of our Sun
in relation to 14 pulsars and the center of the galaxy are also illustrated on the plaque.
Caption: Planetary Society; Image courtesy of the Planetary Society

depends very much on the nature of the data displayed.

In figure 2.4 we see a visualization of documents on cancer research. Each individual document

is represented by a green dot. Points which lie close together cover similar topics. It is easy to get

an overview of the importance of certain topics, as well as to find documents which are similar to a

given document.

In figure 2.5 we see a quite different way to visualize a data-set which is similar to the previous

one. This time the focus is on the different topics covered in documents and how important they

are. The importance of topics, measured by the number of documents dealing with each topic, is

encoded by the height of mountains in a virtual landscape. Similar topics are located closer together

than unrelated topics.
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Figure 2.3: Metaphors are used to visualize abstract information. In image 1 we see proportions mapped to
slice sizes of a disc. In image 2 we see a comparison of chemical methods applied to various elements. The
length of the bars representing a method encodes its quality. Figure (2) courtesy of Rowena Mankelow

Sometimes different ways of visualizing the same data are used simultaneously in one picture.

Figure 2.6 shows two examples.

Information visualization is a very well studied area with a long history of contributions. For a

more detailed introduction we refer the reader to [22, 95, 115, 116, 117].

Several sub categories of information visualization, specializing in specific ways or applica-

tions, have been developed, and, in some cases, grown into areas of their own right. Among these

are Distortion Techniques [93, 94], Software visualization [34], Algorithm Animation (Chapter 4,

page 42), Network Visualization [9], n-D Visualization [38], and Graph Drawing [8].
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Figure 2.4: The Galaxies visualization uses the image of stars in the night sky to represent a set of docu-
ments. Each document is represented by a singledocustar. Closely related documents cluster together while
unrelated documents are separated by large distances. Courtesy of Pacific Northwest National Laboratory

2.2 Graph Drawing

The termgraph drawingis used for visualizations of relational data. A graphG = (V,E) consists

of a setV of nodes and a listE of edges. Nodes represent data items and edges represent the

relationships between the data items. Usually an edgee ∈ E is defined by an unordered pair of

nodes indicating a relationship between these nodes. Unless otherwise restricted, edges may occur

more than once in a graph. Variations of this definition exist: In directed graphs, the order of the

nodes in an edge is significant. In hyper-graphs, edges are defined by arbitrary subsets of the nodes

of the graph.

Figure 2.7 shows an example of a graph. The nodes are displayed as circles and the edges are

displayed as lines connecting two nodes. Graphs have many applications and are, for example, used

to model software systems [34], represent knowledge maps [37], or to describe communication

networks [9]. An in depth introduction to graph drawing and further references can be found in

[7, 8, 61].

In many applications a graph does not contain specific geometric information. Theoretically,
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Figure 2.5: In the ThemeViewTM visualization, the topics or themes within a set of documents are shown as
a relief map of natural terrain. The mountains in the ThemeViewTM indicate dominant themes. The height
of the peaks indicates the relative strengths of the topics in the document set. Similar themes appear close
together, while unrelated themes are separated by larger distances. ThemeViewTM provides a visual overview
of the major topics contained in a set of documents. Courtesy of Pacific Northwest National Laboratory

when displaying such a graph, the positions of the nodes on the screen can be chosen arbitrarily. For

information visualization, however, the choice of positions of the nodes can make a large difference

regarding the quality of the visualization.

Figure 2.8 displays the same graph as figure 2.7. This time however the nodes are positioned in

such a way that no edges cross each other. This makes it much easier to perceive the structure of

the graph. The aim of graph drawing is to produce “good” visualizations of graphs.

Many different ways of visualizing graphs exist, as for example shown in figure 2.9. In most

cases however, nodes are drawn as geometric shapes and edges are drawn as lines. In this thesis

we deal exclusively with graphs that are drawn in this standard way. Figures 2.10, 2.11, and 2.12

shows some typical examples of drawings of graphs.

The criteria for the quality of a drawing of a graph depend very much on the individual appli-

cation in which the graph is used. Especially, as these applications are not necessarily limited to

the area of information visualization. For example, if the nodes of the graph represent electronic
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Figure 2.6: Different metaphors can be used simultaneously to visualize the same data in one picture. The
different metaphors display different properties of the data. Courtesy of Pacific Northwest National Labora-
tory

Figure 2.7: Example of a graph drawing. The nodes are displayed as circles and the edges are displayed as
lines connecting nodes.

components and the edges represent the wiring of the components then a good drawing might be

one that places the nodes and edges in such a way that as many nodes as possible can be placed on

one chip without two wires crossing each other. In information visualization applications the main

focus is to create drawings which communicate the information encoded in the graph as efficiently

as possible. Several criteria have been identified to be essential in this case [8]:

• Minimize the number of edge crossings.
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Figure 2.8: Example of a better drawing of the graph from figure 2.7

• Minimize the area of the drawing.

• Minimize the total edge length.

• Minimize the maximum edge length.

• Uniform edge length.

• Minimize the total number of bends.

• Minimize the maximum number of bends in an edge.

• Maximize the angular resolution of the edges.

• Maximize symmetry in the drawing.

In most cases not all of these criteria can be met in one drawing. Individual criteria might conflict or

the computational complexity of optimizing all criteria in one drawing can be to high. Most graph

drawing algorithms therefore try to optimize a subset of these criteria. Attempts have been made

to classify these criteria according to how important they are for creating a good graph drawing

[85, 86].

In some cases further restrictions to the drawing may apply. Edges may be allowed to only point

into a specified range of directions, edges may not be allowed to cross each other, or node positions

might be restricted to points on a grid.
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Figure 2.9: Examples for different ways of visualizing the same graph (NNC 261). The graph is courtesy
of the National Nuclear Cooperation (UK) and derived from a model of an advanced gas cooled reactor
core. Image (1) shows a traditional drawing of the graph. Image (2) shows a structure plot, image (3) a
city plot, and image (4) shows the spectral portrait of the graph. Source:http://math.nist.gov/
MatrixMarket/data/Harwell-Boeing/nucl/nucl.html

Many general and specialized algorithms for drawing graphs automatically have been developed

and an extensive overview can be found in [7, 8]. Most prominent among the general algorithms

are force directed approaches [29, 47, 59] and Sugiyama style approaches [33, 110, 111, 112].

2.2.1 Force Directed Graph Drawing

Force directed graph layout strategies compute node positions by simulating forces in a physical

system. The nodes and edges of the graph are interpreted as physical components exerting forces

on each other. While nodes repel each other, edges act as springs attracting nodes to each other.

The force acting on each nodev ∈ V is given by:

∑
u∈V \v

k1

d(u, v)2
1v,u +

∑
e=(v,u)∈E

| d(u, v)− l(e) | k21v,u

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/nucl/nucl.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/nucl/nucl.html
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Figure 2.10: Example of a graph drawing. Image courtesy of Bradley Huffaker, CAIDA.

whered(u, v) is the distance between nodev andu, 1v,u is the unit vector fromv in direction ofu,

l(e) is the optimal length of edgee, andk1 andk2 are constant factors.

Force directed methods minimize the energy, that is the sum of the forces, of the simulated

system by moving nodes along their force vectors. Force directed methods can be used to generate

drawings in two or three dimensions. Although this method is rather slow, usingO(|V |2) runtime

per iteration, and tends to run into local minima, it is very popular. The reason for this is that,

despite its shortcomings, it tends to produce good drawings for many graphs and is comparatively

easy to implement. Its property to emphasize symmetric structures in a graph can be identified as a

further reason for its success. Figure 2.13 shows examples of drawings which were computed using

a force directed paradigm.

Further, it is easy to extend force directed methods by adding additional forces to the system.

For example Arne Frick et.al. [42] use a central gravity force to keep unconnected components of

the graph from drifting apart.

The force directed optimization paradigm plays an important role in this thesis. Firstly, many of

the most commonly used graph drawing algorithms are based on simulating force directed systems.

We can therefore expect transitions between drawings that were generated using such algorithms to

be one of the main applications of animations in relational information visualization. Seven of the
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 Layouted using ffgraph’s sugiyama 
  with adjusting some text-labels for better readability
 Background of icons not masked due to
  limitations in ffgraph’s eps export module

Figure 2.11: Example of a graph drawing. The graph represents dependencies within the X11 windows
system.

ten scenarios in our benchmark suit involve at least one drawing which was generated using a force

directed layout algorithm.

Secondly, we propose methods which use the force directed optimization paradigm to compute

animations between arbitrarily generated graph drawings. These methods are presented in chapter

5 from page 146.

2.2.2 Sugiyama Style Graph Drawing

The Sugiyama style layout paradigm was initially designed as a method to produce hierarchical

drawings of directed, acyclic graphs. It is however possible to extend the Sugiyama style approach

to be able to handle general graphs and we discuss this briefly at the end of this section. Hierarchical

drawings are characterized by the fact that all nodes and edge bends lie on parallel rows, called

layers, and all edges are monotonic. Figure 2.14 shows some examples of graph drawings which

were generated using Sugiyama style algorithms.

A drawing is produced in three steps where each step is based on and restricted by the result

of the previous step. This can mean that a bad decision in an early phase can reduce the quality of
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Figure 2.12: Examples of graph drawings. Images 1 and 2 courtesy of the Cooperative Association for
Internet Data Analysis (CAIDA).

all subsequent phases. Furthermore theoretical problems underlying some of the phases have been

proven to be NP-hard [50]. This, in combination with the strong interdependence of the phases

make the choice of good and compatible heuristics essential. To produce a drawing the algorithms

perform the following steps:

1. Assign nodes to layers

In this phase each node of the graph is assigned to a layer. Each layer corresponds to a

row in the drawing plane. The layer assignment has a strong influence on the area required

by the drawing as it determines the height of the drawing and gives a lower bound on the

width of the drawing. Many different approaches for this step exist [8]. Layer assignment

methods usually try to optimize criteria such as minimal height or width of the final drawing.

Minimizing both width and height in one drawing has been shown to be NP-hard [68].
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Figure 2.13: Examples of two and three dimensional drawings which were generated using force directed
algorithms. Image 3 courtesy of Aaron Quigley.

2. Reduce edge crossings

In this step the relative positions of the nodes within each layer are computed. The main aim

in this phase is to minimize the number of edge crossings between two layers. This problem

has been shown to be NP-hard [51]. Several good and fast heuristics exist [30, 58].

3. Assign final positions to nodes

So far a vertical coordinate and a horizontal ordering has been computed for all nodes. In the
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Figure 2.14: Examples of graph drawings produced using Sugiyama style layout algorithms. The images
are rotated by 90 degree to better fit onto the page. Image (3) courtesy of Falk Schreiber.

last step the horizontal position for each node is determined according to various aesthetic

criteria. Important criteria include that dummy nodes of the same edge should be placed

directly above each other to form a straight line and that nodes should be centered over their

successors. The theoretical problems underlying the optimization of some of these criteria

have been proven to be NP-hard [8, 50, page 218]

The original Sugiyama style layout algorithm can be easily modified to handle general graphs.

In the case of undirected graphs an arbitrary direction can be assigned to each edge of the graph as

long as no cycles are introduced.

If the graph is directed but contains cycles the cycles can be removed by reverting individual

edges. Although this can be done in linear time using a modified depth first search algorithm, trying

to make a graph acyclic by reverting as few edges as possible has been proven to be NP-hard [50,

page 192].
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Graph drawing algorithms which are based on the Sugiyama method are most commonly used

for displaying hierarchical relational information. We can therefore expect such drawings to fre-

quently occur in graph animation applications. Consequently, several of the benchmark tests which

are used in this thesis contain at least one drawing that was generated using a Sugiyama style graph

drawing algorithm.
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2.3 Animation

A movie consists of a sequence of still images. These images are calledframes. This sequence

is characterized by subtle but highly structured changes between consecutive frames over space

and over time. The changes are perceived by the human brain as movements of the corresponding

objects in the image. To create a live-action film a camera shoots consecutive pictures at a rate of ap-

proximately 25 frames per second. When these pictures are shown to humans using an appropriate

projector they induce the effect of displaying continuous motion.

An animationcould be characterized by the fact that the individual frames are not the result of

a live-action scene recorded by a camera. Rather, each frame is drawn or modelled by a human

or rendered on a computer. Although accurate, this characterization is by no means complete. It

fails to specify the constraints on the individual images which determine whether a sequence of

pictures is actually interpreted as moving or changing objects by a human spectator. Not all random

sequences of images are perceived as continuous motion. It also focuses on the technical aspect of

animation, ignoring itsnatureor essencewhich Norman McLaren tried to capture with his famous

definition [80]:

Animation is not the art of drawings that move but the art of movements that are

drawn; What happens between each frame is much more important than what exists on

each frame; Animation is therefore the art of manipulating the invisible interstices that

lie between the frames.

Many further attempts to formulate a definition have been made, among others by Edward S.

Small and Eugene Levinson [104], and Charles Solomon [105]. For a more in-depth discussion see

[48]. The common denominator of all approaches however seems to be that in an animation the

illusion of “motion is created rather than recorded”[48].

A large number of different techniques for creating the frames of an animation have been in-

vented. These includecutout animation, silhouette animation, Pixilation, Collage, Paint-on-glass,

clay and puppet scenes,Rotoscoping, Cel-animation, and computer rendered animations. A detailed

discussion of these techniques can be found in [65]. The two techniques almost exclusively used

for commercial and scientific animation nowadays are cel animation and computer generated ani-

mation; although some exceptions, such as the highly successful puppet animation movieChicken

Run(2000) by Peter Lord and Nick Park, can still be found from time to time.
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Cel animation was invented independently and marketed by a joint company by Earl Hurd and

Joseph R. Bray in 1914. The frames of the animation are drawn on several layers of transparent

surfaces. In early times these transparents (calledcels)were made of celluloid giving the technique

its name. The biggest advantage of cel-animation is its cost effectiveness. For examples, in a

sequence where a figure walks in front of a background, the background has to be drawn only once

and can be reused in every frame in the scene. Only the changing parts have to be repainted in each

frame. Further a complete motion cycle, for example a step, of a character can be reused repeatedly

to animate an entire walking sequence. Cels can be used in more than two layers. If in a particular

section only the eyes of a character move then three layers of cels are used: one for the background,

one for the foreground character and one cel for the eyes of the character. Cel animation technique

also allows the production of an animation by many concurrently working artists. Senior artists only

sketch the main poses for each character and draw importantkey frames. The in-between frames

are then drawn by assistant artists, or even computers.

In computer generated animations the frames of the animation are rendered by a computer pro-

gram. Animation artists specify the scenery, objects, and actions of the animation using computer

programs. The computer then uses these specifications to draw the frames. Modern computer pro-

grams allow more complex three-dimensional animations than a human artist could draw. Figure

2.15 shows an example of a computer generated animation.

Figure 2.15: The movie “Luxo Jr.” by John Lasseter is an early example of a completely computer generated
animation. Source:www.pixar.com

The animation community is extensive and the number of works, especially by independent

www.pixar.com
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artists, is enormous. Computers and the internet provide the opportunity for artists to create and

publish independent works at very low cost. Good resources for further research on current direc-

tions and events in the animation community are theAnimation Journal, the Animation World Net-

work1, as well as the internet discussion groupscomp.graphics.animationandrec.arts.animation.

Excellent and extensive annotated bibliographies can be found in [63, 78].

2.3.1 Applications of Animations

Animations are used in many areas and for many differen purposes. In the following sections we

briefly introduce the most important ones.

Create explicitly non-realistic characters and environments

This is probably the most prominent application of animation. The purpose usually is to create

entertaining movies or film sequences. Examples are virtually infinite and, among many others,

include cartoons featuring famous characters such as Bugs Bunny (Figure 2.16.1), Daffy Duck

(Figure 2.16.2), and Walt Disney’s Mickey Mouse (Figure 2.16.3).

They also include a long history of full feature-length movies from films such asSnow White

and the Seven Dwarfs(Walt Disney, 1937, Figure 2.17) to recent hand drawn movies such asThe

Emperor’s New Groove(Walt Disney, 2000) andPrincess Mononoke(Miramax, 1999) by Hayao

Miyazaki, or completely computer generated movies such asShrek(DreamWorks, 2001, Figure

2.18) orFinal Fantasy: The Spirit Within(Columbia Pictures, 2001, Figure 2.19).

Brush up or add elements to live-action scenes

Animations, especially computer generated animations, are a popular tool to postprocess real-life

movie sequences. They are used to hide unwanted bits, to accentuate parts, or to add effects and

objects to a scene. A prominent early example is the movieJason and the Argonauts(1963) by Don

Chaffey where fighting skeleton warriors were added to the movie using stop motion animation.

In the movieForrest Gump(1994) computer animations are used to add objects such as a falling

feather, or a whole lake to some scenes. This is done in such a way that the viewer is not supposed

to be aware of the animation and believes that what he sees is part of the live action scene. In

Star Wars: Episode I - The Phantom Menace(1999) almost every scene was post-processed by a

1http://www.awn.com/

http://www.awn.com/
http://www.awn.com/
http://www.awn.com/
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Figure 2.16: Examples of famous cartoon characters.

computer. Animations are also used to add photo-realistic content to scenes which would be difficult

or impossible to photograph because the displayed objects no longer, or have never actually existed.

Other prominent examples are the dinosaurs inJurassic Park(1993, Figure 2.20) or all kinds of

magical creatures inHarry Potter (2001). The movieThe Matrix(1999) by Andy Wachowski and

Terminator 2: Judgment Day(1991) by James Cameron make extensive use of computer animation

to add special effects.

Create surreal elements or complete worlds within a real-world universe

Some directors facilitate the surreal atmosphere generated by animations as an explicit style ele-

ment. The movieTron (1982, Figure 2.21) by Steven Lisberger uses animation sequences to display

the inside world of the computer into which the protagonist is transferred.
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Figure 2.17: The movie “Snow White and the Seven Dwarfs” (1937) by Walt Disney was the first feature
length animation film.

Figure 2.18: The movie “The Shrek” (2001) by Dreamworks is an example for a state of the art feature
length completely computer rendered animation film. Source:http://www.shrek.com/ .

Ralph Bakshi usesrotoscopingto display evil characters in the 1978 movie version ofThe Lord

of the Rings(Figure 2.22). Rotoscoping is a technique where real actors are filmed in a live-action

scenario. These recorded images are then modified by tracing and painting.

The 1988 movieWho Framed Roger Rabbitby Robert Zemeckis explicitly uses the contrast of

live-action and animation universe as the framework of the story. A live-action detective switches

between the real world and the cartoon world to help a cartoon rabbit to prove its innocence in a

murder case. Further examples areMary Poppins(Robert Stevenson, Walt Disney, 1964) orPete’s

dragon(Don Chaffey, Walt Disney, 1977).

http://www.shrek.com/
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Figure 2.19: The movie “Final Fantasy, The Spirit Within” (2001) by Hironobu Sakaguchi is another ex-
ample for a state of the art feature length animation film which is completely computer rendered. Source:
http://www.finalfantasy.com/ .

Illustrate difficult or impossible to photograph or abstract information

Animations are not exclusively used for entertainment. In certain medical applications doctors want

to look at parts of the body which are not accessible by a camera. Methods such as MRI or CAT-

scan are used to gather data about specific regions of the body. One way to help a doctor in using

this data for a diagnosis is to transform it into a visual representation of the region and generating

an animation which presents a virtual fly-through. Another application is to simulate an operation

before actually performing it. Some medical operations are extremely complicated and sensitive

to mistakes. In such cases the possibility to simulate the operation before actually performing it

can significantly increase the chance of success. Animations have further been used by lawyers

before court to demonstrate possible events during a crime or an accident as, for example, reported

in [57, 121, 129].

Animations are also very popular in education, and probably everyone has seen numerous ani-

mated films during their school time, explaining various physical laws, chemical reactions, or bio-

logical procedures. Figure 2.23 shows an example of an educational animation illustrating human

hearing.

The benefits of animations in education, although they sound self-evident and students tend to

http://www.finalfantasy.com/
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Figure 2.20: Screenshots from the movie “Jurasic Park’ by Spielberg.

1 2

Figure 2.21: Screen shots from the 1982 Walt Disney movieTron

have a generally very positive attitude towards them [107], are not undisputed. Positive evidence

is reported when using animations in teaching contents based on physical objects, such as pumps,

especially when accompanied by narrated explanations [73, 74]. In teaching abstract concepts such

as algorithms the results are much less conclusive. Positive results are reported, among others,

in [55, 64]. Little or no evidence for improvements in algorithm teaching by using animation are

reported in [83, 107]. Although not conclusive, researchers found evidence that the learning situa-

tion in which the animation is presented [62] as well as the quality of the content of the animation

[83] are key factors for the successful application of animation in teaching algorithms. For a more

in-depth discussion of algorithm animations see section 4 on page 42.
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Figure 2.22: Screenshots from the animation movie “The Lord of the Rings” by Ralph Bakshi.

Figure 2.23: “Gateway To The Mind”, by Chuck Jones, 1958, Bell Science Series, Bell Telephone Labs.
Animation showing anatomy of human hearing perception

Animation as an art form

The fact that this section is titled “Animation as an art form” should not be interpreted as an at-

tempt to qualify the works and artists mentioned in this section as having higher artistic merit

than the works discussed in other sections. Such a distinction is beyond the intention and abili-

ties of the author. It is rather the case that most artists mentioned here have also been involved

in commercial productions from time to time. We use this section to include forms of animation

not covered before. These include mainly independent and non-commercial or scientific works.

Some of these animations are produced using unusual techniques or materials, for example sand on

glass, or LegoTM bricks. Prominent artists and works using animation techniques include German

born Oskar Fischinger (Figure 2.24), Karl Sims (Figure 2.25), David Brody (Figure 2.26), New

Zealand born Len Lye (1901 - 1980, Figure 2.27),anemic cinema(1926) by French Dadaist Marcel

Duchamp (1887-1968), Spanish Surrealist Salvator Dali who started the joint projectDestino(Fig-

ure 2.28) with Walt Disney2, French cubist Fernande Léger (1881-1955), German Dadaist Hans

2The project was never finished however.

http://www.govettb.org.nz/lenlye/default.htm
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Richter, Norman McLaren (1914 - 1987), John Halas (1912 - 1995) and his wife Joy Batchelor

(1914 - 1991) who created the famous animation filmAnimal farm, computer artist Larry Cuba,

Vibeke Sorensen, and many more.

Figure 2.24: Animation by Oskar Fischinger

Figure 2.25: From ”Primordial Dance” By Karl Sims, 1991, Music By David Grimes, Visualized on Con-
nection Machine CM-2

2.3.2 History of Animation

In this section we give a brief and rather incomplete overview of the historical development of

commercial animation. A more in-depth discussion of this topic can be found in [12, 24] and on the

web sitehttp://www.animationhistory.com/ .

http://visualmusic.org/text/maya.html
http://www.animationhistory.com/
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Figure 2.26: FromBeethoven MachineryBy David Brody, 1989, 16mm Film Vivace Beethoven String Quar-
tet #16 in F Major Opus 135

Figure 2.27: Excerpt fromFree radicalsby Len Ley, 1979, 16mm Film Music By Bridman Tribe of Africa

Optical devices to produce animations were invented long before film based motion pictures.

The Thaumatrope dating back to the 16th century consists of a simple disc attached to two strings

and a picture painted on both sides. Rotating the disc has the effect of superimposing the images,

creating the illusion of one merged picture. This device does not produce an actual animation, that

is the illusion of motion, but is based on the same principal as motion pictures, thepersistence of

vision. Persistence of vision refers to the phenomenon that the human eye continues to see images

for a small period of time after they disappear. Due to this effect we are able to perceive individual

pictures presented to us in consecutive order as a stream of continuous motion. Figure 2.29 shows

the two sides of a Thaumatrope and how the images appear superimposed when rotated.

The Phenakistoscope invented in 1832 by Joseph Plateau, is based on the same principal and

actually creates the illusion of motion. The motion sequence is drawn as a series of individual

images on a disc. The disc also contains slots to synchronize the viewer with the pictures. When

standing in front of a mirror and looking through the slots of the spinning disc the illusion of an
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Figure 2.28: Drawings for the filmDestinoby Salvador Dali and Walt Disney. The project was never fin-
ished.

Figure 2.29: Thaumatrope. The first two images show the front and back of the disc. The last image shows
how the images appear superimposed when rotating the disc.

animation is created. Further improvements on the same principal include the Zoetrope by William

George Horner (1834) and the Praxinoscope by Emile Reynaud (1877).

Modern cinema was invented in 1895. Among the earliest animation artists working with pro-

jected films were Frenchmen Emile Cohl (1857-1938) creatingFANTASMAGORIE, and George

Méliès. In 1906 Stuart Blackton created an animated short film calledHumorous Phases of Funny

Faceswhich consisted of a series of comical faces and expressions drawn on a blackboard and

recorded by a camera. With the start of World War I in 1914 European animation more or less com-

pletely disappeared and the animation film industry was almost exclusively dominated by American

artists. In 1914 Winsor McCay createdGertie the Dinosaurwhich is considered to be the first ani-

mated movie featuring a main character and story. In the 1920s the animation market was dominated

and driven forward by the competition of three companies: Fleischer Studios Inc., featuring charac-

ters such as Betty Boop and Popeye the Sailor; Walt Disney Productions, featuring Mickey Mouse,
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Donald Duck, etc.; and Pat Sullivan, producer of the famousFelix the Catcharacter by Otto Mess-

mer. Success and failure of these companies was strongly related to their ability to invent and adopt

new animation technologies. The demise of Pat Sullivan is commonly attributed to his refusal to use

sound in cartoons such asFelix the Cat. Fleischer used sound as early as 1924 inSong Car-Tunes

and Disney releasedSteamboat Willie, the first animation movie containing synchronized sound

recorded on the film, in 1928. Further stages in this race include Disney’s exclusive contract with

Technicolor from 1932 to 1935, Fleischer’s use of the Stereo-optical Process 1934, and Disney’s

first feature-length movieSnow White and the Seven Dwarfs1937. In the early 1940s Fleischer had

completely extended themselves financially and had to file for bankruptcy leaving Disney as the

dominant force in the market.

Warner Bros. Cartoons which developed into another major competitor in the animation market

was founded in 1930. Major animated characters featured by Warner include Porky Pig (1935),

Daffy Duck (1937), Bugs Bunny (1940), Yosemite Sam (1944), Pepe Le Pew (1945), Tweety

1(947), Marvin the Martian (1953), and the Tasmanian Devil (1954). Disney won the first Academy

Award for an animation film withFlowers and Treesin 1932. Metro-Goldwyn-Mayer (MGM) en-

tered the animation stage in 1934 withHappy Harmoniesand won their first Academy Award with

Yankee Doodle Mousein 1943. MGM featured characters such as Tom and Jerry 1940, Droopy and

The Wolf, created 1943 by Tex Avery,Fritz the Cat1972 by Ralph Bakshi, Thunderbirds (1968),

and the Beatles’ movieYellow Submarine.

In the 1960s the production of animations started to develop in Japan and grew into a major

player in the animation market. Earlyanime, as Japanese animations are commonly called, include

Tetsuwan Atom(Atom boy, 1963) by Osamu Tezuka,Science Team Gatchaman, andSpace Cruiser

Yamato. Anime series such asDragon Ballsare a common part of every-day daytime TV since

the 1990s. Recent major anime productions includeNeon Genesis Evangelion(Gainax, 1995) and

Ghost in the Shell(1995).

In America in the 1970s and early 1980s the animation market was dominated by low quality,

mass-produced cartoons such asScooby Doo, andThe Jetsons. In the mid 1980s things changed

for the better. Disney released theDuck Talescartoon series in 1986 and started to produce new

animated feature films such asWho Framed Roger Rabbit(1988) andThe Little Mermaid(1989).

Warner releasedTiny Toon Adventuresin 1989 and theBatmananimation series in 1992. The 1990s

also saw the advent of new players in the market such as Nickelodeon Network featuring popular

animation series such asRen and Stimpy, Count Duckula, andRugrats. The highly successful
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animation seriesThe Simpsonswas started by 20th Century Fox Television in 1989.

As soon as computers with appropriate computing power were available in the 1960s people

began using computer programs to create animations as well as using animations within computer

programs. Ken Knowlton et al. started to create computer films in 1963 at Bell Telephone Labo-

ratories. E. Zajac createdTwo-gyro gravity-gradient attitude control systemwhich is considered to

be the first computer animated film [70] in 1963. Stephen R. Russell is commonly regarded to be

the first person to use animated graphics for the his interactive computer gameSpacewarin 1961

[35]. Peter Foldes won thePrix du Juryat the Cannes Film Festival in 1974 for his computer film

La Faim. John Lasseter received an Academy Award nomination forLuxo Jr. (Figure 2.15) and

his short filmTin Toywas the first computer generated film to actually receive an Academy Award.

Apple started to use basic animations such as opening and closing icons in their graphical user in-

terfaces in 1984 [10]. Very elaborate animated user interfaces can be found on countless sites on the

internet nowadays.Toy Storycreated by John Lasseter at Pixar Studios and Walt Disney Pictures

in 1995 was the first completely computer generated feature-film. Dreamworks released their first

computer animated feature filmAntzin 1998 and the stop-motion featureChicken Runin 2000.

2.3.3 Production Stages for Creating Animations

Although most animation studios have their own individual procedures to produce animations, cre-

ating a conventional cel-animation generally includes the following steps [70, pp. 4-5]:

1. Make up the story

In the beginning of every animation is the story. The story is usually defined by:

• The synopsis, a maximum one page summary.

• The scenario, a detailed description of the story.

• The storyboard, a comic strip version of the story, breaking it down into sequences of

actions, scenes and shots. Exposure sheets are used to specify each animation shot down

to cel-layers.

2. Define the layout

In this phase the characters and shapes in the foreground as well as backgrounds are designed

and their relations specified.
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3. Produce the sound track

In conventional animation productions the sound track is produced before the animation se-

quences. It is the responsibility of the animation artists to make sure that the animations

conform to the sound track. Advanced productions even match lip movements of the charac-

ters to the spoken text.

4. Create detailed layout correlated with sound track.

5. Draw key frames

Key frames are distinctive frames which define the main stages in a movement. As these

frames mainly define the animation film, creative and usually senior animators are used for

this task. In computed rendered animations key frames are modelled and movement paths

defined using special software.

6. Draw in-betweens

Assistant animators draw the frames that link the key frames. As the in-betweens differ

only slightly from frame to frame and the start and endpoints are clearly defined by the key

frames, less artistic expertise and creativity is needed for this task. Usually junior animators

are assigned to these tasks.

7. Make a trial film / Pencil test

So far all drawings are done with pencil and paper. These drawings are combined to create

a trial film. Errors in the animation sequences can thus be identified and eliminated before

further production stages are executed.

8. Xeroxing / inking frames

In this stage the pencil drawn frames are transferred to cels. This is usually done by using

cameras. The lines of the drawings are traced with ink.

9. Painting frames

To produce colour animations the faces defined by the ink drawings have to be colored.

Some simplified production techniques, for example using standard registered paper sheets

or colour xeroxing, are sometimes used to skip the painting and inking phases.
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10. Checking

Final checks by the animation artists are necessary to ensure that the animation scenes are

correct.

11. Recording

The cels for each shot are mounted on an animation stand and recorded by a camera.

12. Postproduction

Animation films like conventional films undergo several stages of post production steps such

as developing the film, or editing and cutting to turn them into a final product.

2.3.4 Computers and Animation

The ability of modern computers to generate high resolution images is nowadays widely used to

assist in the creation of animation movies, online animations, and for creating interactive animations

in user interfaces of computer programs.

Computers are able to perform an ever increasing number of tasks involved in the various pro-

duction stages of animation movies. Work which requires little creative skills such as xeroxing, ink-

ing, painting, and recording can be performed more or less autonomously by computer programs.

Interpolation techniques can be used to automatically compute in-betweens if the transformation

is specified accurately enough. The transformation has to describe the movement of each point of

the drawing in space and time. The space component defines the path of the object in two or three

dimensions. The speed of the point during the animation is defined by the time component. The

speed is usually given by a continuous function describing either constant movement, acceleration,

deceleration, or a combination of these. Figure 2.30 shows typical speed functions [70, page 49].

One of the key issues of this thesis is the introduction and discussion of new techniques for

automatically finding transformations between key-frames when no explicit transformation is given.

Highly creative tasks in the production of conventional animation movies, such as designing

the layout, creating key frames, or composing sound tracks are still out of reach for computers.

Although computers cannot perform these tasks, they nevertheless can still provide powerful tools to

aid the animation artist. It is very difficult to create complex three dimensional animations without

appropriate modelling software. Sophisticated software packages can assist the artist even further.

Modern animation tools allow artists to automatically animate objects such as particles, swarms,
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Figure 2.30: Common speed functions for animations. The functions map a point in time (X-Axis) between
two key frames (in fractions between 0 and 1) to a point on the path (Y-Axis).pl is the length of the path of
a point.

and flocks of animals in a scene according to specified behavioral patterns [88, 89, 114]. Further,

complicated motion sequences, for example human motions, can be using a motion capture device.

The recorded motions can then be animated autonomously by a computer.

Animation in Information Visualization

In the context of information visualization, the amount of human intervention which is necessary to

generate an animation is usually very small:

• Most applications do not need complex sound tracks. Specific sound effects or background

music can easily be associated with events or objects and automatically be added by the

software. They are part of the metaphor used to display the data.

• Object and background layout are defined by the metaphor used for the visualization.



2.3 Animation 40

The only steps of the animation production process which are relevant to create an animation in

information visualization are:

• Story design,

• Key frame specification,

• In-betweening.

In the following sections we investigate what impact these three production steps have on the cre-

ation of animations in selected, prominent areas of information visualization.

Visualization of results of measurements and simulations

In many situations it is difficult or impossible to display all data resulting from a measurement or

simulation in a single static image. We can distinguish between dynamic data containing a natural

time component and static data which does not contain a time component. Data is considered to

contain a time component if individual data items change during the time of measuring or simulat-

ing.

For data that contains a natural time dimension such as weather samples taken over a specific

period of time or stresses on a car body during a crash test an animation is the most natural form of

visualization.

CAT or MRI scans (which measure the distribution of water in a human body) and geological

scans produce large amounts of static volume data. They do not possess a time component. Al-

though the data itself does not change over time, a reasonable sized static image would not be able

to adequately convey the information as only a fraction of the available data could be displayed.

Simulations are of a similar nature as measurements. The only difference is that the data does

not result from recorded events of a real experiment but rather is computed according to a theoretical

model. For the purpose of visualization this difference is irrelevant.

The outline of the story in these cases is defined by the general and specific nature of the data.

In the case of static data the user usually wants to explore it by navigation. That is, the story is

implicitly given by navigational commands of the user. Computer assistance is also possible in

these cases. The computer could automatically identify suspicious data in an MRI scan and lead

the user to the specific region. Key frames are also defined by the user navigation. In-betweens

for natural navigational commands, simulating a continuous movement through the data, can easily
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be interpolated. If this is not intuitively possible, for example for jumps to specified locations,

in-between strategies have to be defined and associated with appropriate navigation commands by

the designer of the system. In the case of a jump the system could for example compute a feasible

movement to this position and execute it or simply fade out at the current position and fade back in

at the destination.

When animating visualizations of dynamically changing data the story and key frames of anima-

tion are predetermined by how the data changes. The computation of in-betweens can be arbitrarily

complex and depends on the metaphors that are used to display data. For simple cases such as tem-

perature changes which are displayed using a colour gradient, simple interpolation strategies can

be used. In cases with complex metaphors or low granularity of the samples interpolation might

only be possible with extensive additional information about the measured objects. For example the

trajectory of a ball can be reconstructed and animated even if the granularity is poor by interpolating

data samples according to the appropriate physical laws.

Computer games

In computer games the story is usually defined by three parties. The developers of the game engine

define the general framework for the story. The story has to be told by the means provided and the

restrictions imposed by the game engine. This can have severe consequences: a group of architects

tried to use the 3D-engine of the first person shooter gameQuakeTM to generate virtual walks

through buildings. They finally had to abandon this project as the game engine did not provide the

possibility to use un-armed characters [71]. Game engines are complex computer programs and

have to be designed and written by humans.

The second group involved in creating a computer game specifies the layout, objectives, and

story underlying the game. They design the levels and maps of the game, the background music,

sound effects, and objects and non player characters with whom the player interacts. The degree

of freedom in this task depends very much on the flexibility of the game engine and varies widely

from game to game. In many board games, such as chess programs, level design is restricted to the

graphical design of the board and pieces. On the other extreme most MUDs3 [103] allow level de-

signers or even players to extend the semantics of the game by providing a programming interface.

Usually levels are designed by humans. Computer assistance occurs in the form of drawing, image

3Multi User Dungeon games (MUDs) are games which allow many players to concurrently navigate and interact in a
dynamic virtual world.
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processing, and modelling software. Often game specific level editors exist which help the designer.

In some cases the games provide functionality to randomize level design (Nethack) or create levels

automatically according to design parameters. For example, in the computer gameCivilizationTM

the computer can create maps and scenarios based on user specified parameters such as number of

opponents, land-sea ratio, and climate.

The last party involved is the player. The player interactively navigates through the levels of the

game and interacts with objects and non player characters thereby defining the remaining part of

the story. The degree of freedom depends on the game engine and level design. It is difficult to do

something with a chess program other than to try to set the opponent check mate. In modern role

playing games such asBaldur’s GateTM player actions can have a significant impact on the story

line.

Independent of the degree of freedom that is given to the player, the game engine has to be

able to autonomously create the appropriate animation sequences for the user input. Usually this is

achieved by a combination of behavior descriptions, simulation of physical laws and pre-designed

animation sequences. In most cases the key frames are defined by the user actions and the game

physics. The in-betweens are either interpolated, for example in modelled three dimensional lev-

els, or consist of repeatedly displayed animation sequences which were pre-designed by the game

designers.

Visualization of abstract data

Abstract data and concepts are often difficult to understand if presented in textual form. Visualiza-

tions are a valuable help to either try to interpret them or to communicate them to others. If the

data contains a time component or is too big to be displayed in one static image, animations can

significantly improve the quality of a visualization. Figure 2.31 shows two snapshots of a three-

dimensional model derived from a chaotic system defined on coupled lattice maps. The user can

navigate through the model to look at it from different points of view gaining a deeper understanding

of the data.

Figure 2.32 shows an animation used to visualize a diffeomorphism related to the connection

between the spin of fundamental particles and the geometry of space-time. It shows the behavior

over a720o rotation around the center.
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Figure 2.31: Model used in the visualization of a chaotic system defined on coupled lattice maps. Courtesy
of C. Ormerod, Prof. B. Pailthorpe, N. Bordes School of Physics, University of Sydney

Algorithm animation In computer science education, teaching complex algorithms such as sort-

ing, shortest path, or fast Fourier transformations to students is a very challenging task. When

only describing the algorithm or just presenting the source code students often find it very difficult

to understand how the algorithm works. As algorithms involve the execution of instructions in a

sequential order animations seem to be a suitable visualization tool. Researchers in the area ofal-

gorithm animationseek to devise methods to create animations that communicate the semantics of

algorithms.

The termalgorithm animationis usually credited to [18]. Many special and general purpose

algorithm animation systems have been developed since the videoSorting out Sorting(1981) by

Roland Baecker, commonly regarded as the first example of algorithm animation, was presented

at SIGGRAPH ’81. They range from systems which merely display a movie-like animation to

systems which allow complex user interactions such as changing parameters and input data. Promi-

nent examples are Balsa II [17], Zeus [16], XTango [108], Samba [106], Daphnis, JAWAA, GATO,

GANIMAL, Jeliot, GASP (II) and VADE, and Leonardo. Numerous other systems exist, many

of which were developed in-house at universities and are exclusively used for teaching at these

universities. After a strong initial enthusiasm for algorithm animation empirical studies, in many

cases, found little or no evidence conclusively supporting the hypothesis that algorithm animation

significantly helps students to understand complicated algorithms [62]. Much research has been

undertaken in trying to understand how these negative results can be explained, especially as pos-
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Figure 2.32: This animation is part of an effort to explore possible connections between the spin of fun-
damental particles and the geometry of space-time. Courtesy of Andrew Norton, School of Mathematics,
University of New South Wales

itive findings have also been reported [55, 64, 90]. Many factors which determine the success of

animation in teaching algorithms have been identified. Among these are the learning situation in

which the animation is presented [62] and the quality of the actual animations themselves [40].

The story and key-frames are usually almost exclusively designed by humans, in most cases

by the computer scientists who developed the animation system. These people usually do not have

much expertise in animation design and the poor quality of many stories and graphical metaphors

is not very surprising. Key-frames are often graphical representations of the state of the machine

executing the algorithm and generated semi-automatically by the system according to user-specified

metaphors. In many cases, limited choice in graphical representations adds to the poor overall

appearance. In-betweens are in most cases computed as linear interpolated movements between

positions. This generally does not agree with how humans anticipate movements. Experiments on

human perception have shown that humans generally prefer natural motion paths, for example arcs,

to movements on a straight line [36, 100, 102].

In some cases linear interpolation of positions is also counter-intuitive with respect to the pre-
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sented algorithm itself. For example, a linear movement of an arrow along the address-space is an

exceptionally bad, but not unheard of, way to visualize a changing pointer. A pointer is set to a new

address in constant time by the computer whereas the animation displays a movement which takes

linear time in relation to the distance of the two addresses.

The animation methods which we develop in this thesis do not directly address the problem of

animating algorithms. Although some approaches might, at least partially, be used in algorithm

animation environments, we would expect that animation methods which explicitly consider the

semantics of the underlying animated algorithm are more appropriate in such cases.

Graph drawing Another application where animations are used to visualize abstract data is graph

drawing. When working with a graph, the user builds amental mapof that graph. The phenomenon

of “mental maps” is well studied in the areas of geography [53] and psychology [27]. The term

mental mapis commonly credited to Tolman [113]. It refers to the observation that humans tend

to build map-like cognitive representations of their environment including metric properties and

topological relationships between landmarks. These mental maps are abstract and distorted repre-

sentations of the underlying real structures. For example, we automatically build a mental map of

the city in which we live. The mental map enables us to navigate in the city without carrying a

street directory with us all the time. The map contains very detailed information about our local

neighborhood and some other important places whereas areas we hardly visit are represented as

abstract units. Whole suburbs that we never go to can be represented at the same size as our neigh-

borhood. On the other hand, important transit roads and landmarks tend to be over-emphasized.

Figure 2.33 shows the result of an experiment where inhabitants of Westwood were asked to draw

how they see Los Angeles [53]. It shows a detailed knowledge of their neighborhood and major

transport facilities such as freeways and the international airport. Representations of other parts of

Los Angeles are less detailed and more error prone.

Figure 2.34 shows a caricature of how New Yorkers see the United States. Although humorously

over-emphasized it shows some principal truth about the New Yorker’s point of view. The most

important parts are obviously Manhattan and Brooklyn. The Bronx is at about the same level as

Boston marking the northern border. To the west things get more and more confused. States change

names or move to completely wrong positions. California is split into Hollywood, California, and

San Francisco. Florida, as a popular holiday destination, is enlarged and almost borders to New

York.
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Figure 2.33: Mental Map of Los Angeles of middle-class whites living in Westwood [53]

Although little actual empirical evaluation has been done, it is widely accepted that when work-

ing with graph drawings people build a mental map of that graph similar to the mental maps de-

scribed above [31, 32]. In many applications, however, graphs are not constant but change ac-

cording to user and program actions. These changes can be visual such as changes of positions or

appearance of nodes and edges, or structural such as addition or removal of nodes, edges, or other

graphical attributes. When the graph changes beyond a certain threshold the mental map of the

user gets destroyed and has to be rebuilt. To increase efficiency in graph drawing applications the

number of these events should be minimized. One possible way to achieve this is to try to minimize
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Figure 2.34: Caricature of how New Yorkers see the United States by Daniel Wallinford. [53]

the changes when changing the graph structure or computing a new layout [13, 31, 32]. However,

this is not feasible in all situations.

Another way to help the user maintain the mental map is to communicate the changes in a con-

tinuous movement [10, 45]. Several approaches to the inclusion of animations in graph drawing

systems have been made, for example in the AGD tool [119] or D-ABDUCTOR [77]. The anima-

tions produced by these systems move the nodes and edges of the graph on a straight line from their

initial to their final positions. In practice, these animations are often very confusing and seem to be

of little help in achieving the task of maintaining the mental map.

In contrast to the general graph drawing system mentioned before, the approach proposed by

Yee et.al. in [128] produces animations for the special case of changes between radial layouts

of trees. Such changes occur when, for example, a new focus node is selected. By interpolating

the polar coordinates instead of the Cartesian coordinates of the node positions they are able to

avoid some of the shortcomings of direct linear interpolation. The high quality of the animations is,

however, closely linked to the circular nature of the layout and there is no straight forward extension

to changes between arbitrarily generated graph drawings.



2.3 Animation 48

In graph drawing systems the story of the animation is defined by the changes to the graph.

The key-frames are defined by the individual drawings of the graph. As the animations should

be created autonomously by the computer, user interaction to specify additional key frames is not

desirable and is therefore usually not supported. In all existing systems that we found, in-betweens

are computed using a linear path interpolation between initial and final positions of graph elements.

In the majority of cases these systems do not produce convincing animations and we found from

personal and reported observations, that users often deactivate animations in such systems if this is

possible.

The story, as well as the key frames are given by the individual application and therefore can-

not be improved by the animation method. The computation of the in-betweens is the only point

where improvements in animations can be achieved. In this thesis we therefore focus on developing

improved methods and techniques for computing in-betweens in graph drawing environments.

2.3.5 In-betweening

The division of animation sequences into key-frames and in-betweens was introduced to increase

efficiency in the production of animation movies in film studios.

To ensure a homogenous appearance of the scenes and characters throughout the movie it would

be desirable that all drawings are produced by a small set of artists. To ensure the highest possible

quality the best artists should be chosen.

However, many tens of thousands of drawings have to be produced to create a feature-length

animation film. Many parallel working artists are therefore needed to be able to create a film in

reasonable time. Further, the creative and artistic potential of available artists differs significantly.

As a compromise the senior animation artists only draw certain key frames of the movie, as

well as character sheets showing characters in typical poses. The gaps between the key frames

are characterized by small changes which can be completed with comparatively low artistic and

creative skills by junior artists. Using the key frames and the character sheets as a template high

homogeneity as well as quality can be achieved. Due to the low amount of creativity necessary for

creating in-betweens computers are a valuable tool to assist artists. In this section we look at how

computers are used to create in-betweens in animations. For further reading we refer the reader to

[75, 70, pages 44-56].
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Point in-betweening

In the following paragraphs we introduce approaches which address the problem of point in-betweening.

That is, the problem of computing a motion path for a single point through a given list of key posi-

tions.

Linear interpolation The easiest way to move an object from a pointP0 to a pointP1 is to move

the object on the straight line connectingP0 andP1. If two key frames contain the same number of

objects and the objects do not change their shape such a motion can be computed very easily. The

following linear function gives the in-between points for the movement of a point fromP0 to P1:

P (t) = tP0 + (1− t)P1, t ∈ [0, 1]

If an animation sequence is given by several consecutive key-frames continuous interpolation speed

can be guaranteed by adjusting the sampling rate oft according to the distances between key points.

In cases where the number of shapes and objects is not constant between key frames, tech-

niques such as described in [19, 70, pages 44-48] and section 2.3.5 can be used to compute a linear

movement.

In practice linear interpolations produce bad animations. The main problem with moving ob-

jects on a straight line is that the resulting movements do not resemble the typical movement of

objects in the real world. To illustrate this problem we look at the following example. Figure 2.35.1

shows key frames of a ball which is thrown from left to right. It is easy for a human to complete the

trajectory with the given key frames. A possible result is displayed in figure 2.35.2. Using linear

interpolation however, the computed trajectory would look as displayed in figure 2.35.3.

1 2 3

Figure 2.35: Image (1) shows key frames of a ball thrown from left to right. Image(2) shows its natural
trajectory as it would be drawn by humans. Image(3) shows the trajectory as it would be computed using
linear interpolation of the key frames in (1).

Not only does the ball not follow its natural trajectory, but it also has a very unnatural change
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of direction at the highest point of its path. The following points can be identified as essential in

generating convincing motions:

1. Movements should resemble the natural movements of real objects.

2. Motions should be “smooth” over all key frames.

3. The speed of the movements should be controllable.

The following paragraphs discuss animation methods which generate motion paths which fulfill

these conditions. For the purpose of this discussion we restrict animations to movements of points

in two and three dimensions. The key frames are specified by the positions and orientations of the

points.

In addition to the example from figure 2.35 we use the scenario shown in figure 2.36 for our

discussions. It contains three key positions (P0, P1, P2), as well as environmental constraints in the

form of lines. A possible interpretation of the scenario could be the path of a person walking along

two perpendicular walls. A linear interpolation of the key positions would give an obviously non

continuous motion and therefore produce a bad animation.

Figure 2.36: Scenario showing a person walking along two perpendicular walls. Key points are specified by
P0, P1, andP2

Curves and Splines So far we used the term “smooth” in an informal, intuitive way. For a

analytical discussion we have to specify “smooth” in mathematical terms. Although it is clear that

the intuitive notion of “smoothness” of a curve is connected to the continuity of its derivatives, it

is difficult to determine the precise nature of this relationship. Different opinions exist about the

proposition that a functionf ∈ Ca is smoother thang ∈ Cb if a > b. That is, that a curve with a

higher degree of derivability is smoother than a curve with a lower degree of derivability. A detailed
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discussion of this topic is beyond the scope of this thesis and can be found in [25, page 56]. For

our purposes we assume that for all degrees of derivability larger than or equal to one the perceived

smoothness is identical. In fact a higher degree of derivability may lead to unwanted “spikes” in

certain key point configurations resulting in unnatural motions. This effect is illustrated in figure

2.37. Image 2.37.1 shows a set of points which is interpolated using a single polynomial. Although

the curve is absolutely smooth in the mathematical sense it contains undesirable “spikes”. Image

2.37.2 shows the same point set, this time interpolated using a combination of cubic polynomials.

Although the curve is only continuous up to the second derivative it looks more “natural”.

1 2

Figure 2.37: Example of smooth point interpolations. Image 1 shows 8 points interpolated using a single
polynomial. Although the curve is absolutely smooth in mathematical terms is contains undesirable “spikes”.
Image 2, although only continuous up to the second derivative, looks like a more natural interpolation of the
point set.

For any set of pointsS a polynomialf of degree|S| − 1 can be found which connects all

points of the set in a continuous curve by solving the corresponding set of equations. Althoughf is

element ofC∞, this form of interpolation has some unwanted properties as we, for example, have

seen in figure 2.37. This restricts its use in practice to few, specialized areas such as aerodynamics

[120]. In most applications cubic polynomials are used for point interpolation. The curve of a cubic

spline is defined by the following set of equations:

x(t) = a1t
3 + b1t

2 + c1t + d1

y(t) = a2t
3 + b2t

2 + c2t + d2

z(t) = a3t
3 + b3t

2 + c3t + d3, 0 ≤ t ≤ 1. (2.1)
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.

The curve is uniquely determined by four vectors. This allows the endpoints of the curve seg-

ment and the derivative at the end points to be specified in such a way that multiple curve segments

can be smoothly combined. A smooth path through an arbitrary number of key positions can thus

be constructed.

The coefficients of the equations 2.1 can be extracted into a matrixC. With T = [t3, t2, t, 1]

the equations 2.1 can thus be rewritten as:

Q(t) = [x(t), y(t), z(t)] = TC

To avoid having to solve the set of equations for each problem instance, the coefficient matrix can

be further decomposed into a basis matrixM which depends solely on which method is used, and

a parameter matrixG consisting of the problem instance parameters:

Q(t) = TMG

Many different methods of parametrization have been developed. Among others Hermite curves

[120, pp. 483], B́ezier splines [120, pp. 491], Catmull-Rom splines [120, pp. 504], or Akima splines

[2]. They differ in the way in which the control vectors are specified. For example, for Hermite

splinesM is given as

M =


2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0


The parameter vectorG = [P1, P4, R1, R4] consists of the start point (P1) and the end point of the

curve segment (P4), as well as the tangent vectors of the curve atP1 (R1)andP4 (R4).

Constant animation speed over key points can be guaranteed by using appropriate sampling

methods. Figure 2.38 shows a possible path for the scenario from figure 2.36 using a Bézier spline.

The path looks much more natural than a path computed using linear interpolation. However, cubic

splines have some limitations. In general, they cannot be used to model any arbitrary shape, for

example conics [120, page 504], and are not invariant under linear transformations of the control

points [120, page 502]. Nonuniform rational B-splines (NURBS) were introduced by Forrest in
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1980 [41] to overcome this deficiency. Another problem concerns the additional environmental

constraints which may apply to the motion path. Figure 2.38.2 shows another theoretically possible

Bézier spline through the same key points. Practically, however, the path is not possible as the

person would have to walk through the wall.
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Figure 2.38: Image (1) shows a possible path for the walking person scenario computed using a Bézier
spline. Image (2) shows the limits of spline interpolation. Although a valid Bézier spline the computed path
is not possible in practice as the person hardly can walk through the wall.

Skeletons Skeletons were introduced by Burtnyk and Wein in 1976 [20]. They try to aid automatic

in-between generation by mimicking the way that human animation artists work. For example,

when drawing in-betweens for the movement of a human arm the artist does not construct a one

to one mapping of each point of the key frames. The artist rather abstracts the arm to a skeleton,

constructs the motion phases according to the skeleton and maps the results back to transformations

of the drawing of the arm. However, this technique requires a comparatively large amount of human

interaction. Figure 2.39 shows examples of skeleton derived images.

In practice skeletons are usually defined as a network of four sided polygons. Points in the

drawing get a relative coordinate within the skeleton. After transforming the skeleton the new

position of a point can be computed using this relative position.

Quarternions Quarternions are used in three dimensional animations to interpolate between two

orientations of a vector. The discussion in this paragraph is mainly based on [25, 120, page 1063 ].

Further information can be found in [5, 101, 122].

Quarternions were developed by Sir William Rowan Hamilton as a generalization of complex

numbers to four dimensions. They have the general forms + ix + jy + kz, with i2 = j2 = k2 =



2.3 Animation 54

Figure 2.39: Examples of skeleton based drawings [70]

ijk = −1 and are usually written as[s, (x, y, z)]. The set of Quarternions forms a non-Abelian ring

under an appropriate definition of addition and multiplication. Furthermore the set of all possible

rotations in three dimensions fits naturally into the set of Quarternions. As the rotation described

by a Quarternion is invariant under scalar multiplication the set of all possible rotations is even

equivalent to the unit sphere in Quarternion space. The relation of Quarternions and rotations is

given as follows:

Theorem 2.3.1 Let q ∈ H1, q = [cos φ, (sinφ)n], Letr = (x, y, z) ∈ IR3 andp = [0, r] ∈ H then

p′ = qpq−1 is p rotated by2φ about the axisn.

with H the set of Quarternions andH1 the set of unit Quarternions. A detailed proof of this theorem

can be found in [25].

Given two rotations of vectors as Quarternions a continuous interpolation with constant angular

speed can be computed by interpolation of the path between the Quarternions on the unit sphere of

Quarternion space.
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However, there are some problems when using Quarternions to interpolate rotations. Quar-

ternions are based on orientations. Rotations by0o and360o, although quite different motions, are

represented by the same Quarternion. Additional key points can be used to fix this problem. A

bigger problem is the fact that there is so far no known way to account for further constraints on

movements. When for example interpolating the path of the camera it is desirable that the horizontal

orientation of the camera stays constant. It is not possible to model this behavior using Quarternion

interpolation.

P-curves So far we assumed that constant speed along a path is the optimal form of animating

motion. Although true in many cases there are cases where constant speed can result in unnatural

motions. In the example of the flying ball in figure 2.35 constant speed is not appropriate. We

would rather like to see an animation where the velocity of the ball decreases on the way to its

highest position and increases afterwards. In the example of the walking person (Figure 2.36) we

would expect the person to slow down when reaching the bend and possibly accelerating again

afterwards.

Modelling objects paths as P-curves was introduced by R. Baecker in 1969 [4]. Using P-curves

enables the designer to describe the speed as well as the path of an object. The path of each object is

specified by a sequence of points, where each point represents the position of the object at a certain

time. As all circles have equal distance in time the velocity of the objects is defined by the spacial

distance of the points. Figure 2.40 shows possible P-curves for the examples from figure 2.35 and

2.36.

1 2

Figure 2.40: Image (1) shows a possible P-curve for the walking person example. Image (2) shows a possible
P-curve for the flying ball example.
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To increase the smoothness of the path, P-curves can be combined with spline interpolations.

The interpolation speed in this case depends on the distance between key points.

Shape and image in-betweening

So far we have discussed techniques to create in-betweens for points and orientations. In some

cases, for example when animating a ball, it is possible to represent an object by one point and use

the techniques discussed above. Also if we know how to animate an object, for example a walking

person, point interpolation techniques can be used to compute the path and the actual motions can

be filled in using the known motion sequences. Problems arise however if we want to animate more

complex objects. A possible approach in this case is to identify significant points in the object,

compute paths for these points and interpolate the intermediate points accordingly. However, care

has to be taken when applying this approach. Constraints, such as preserving the shape of the object

during the animation have to be guaranteed. Splines for example are in general not invariant to rigid

transformations. This might result in unwanted distortions in a shape while performing a simple

motion such as rotation.

The termsmorphing, metamorphosis, andwarping refer to animations where two dimensional

shapes and images, or three dimensional objects change their appearance during the animation.

The terms are used with some inconsistency in the literature. We use the following definitions

in this thesis; metamorphosis is exclusively used for transformations between three dimensional

objects; warping is exclusively used for transformations between two images; and morphing is used

exclusively for transformations between two dimensional shapes such as polygons or curves.

These techniques, especially warping, are very popular and can be seen in many commercials,

music videos, and movies. As we exclusively deal with two dimensional visualizations in this thesis

we only discuss warping and morphing in the remainder of this section. An extensive and systematic

overview of three dimensional techniques can be found in [66]. The following discussion is mainly

based on [126, 127] for warping and [39] for morphing. References to original papers are included

in this section.

Warping When warping one image into another certain key features should dominate the trans-

formation. For example, when we warp two faces into each other, the transformation of prominent

features such as the eyes, the mouth, or the nose are more important than other parts of the face.

It is very difficult for a computer program to identify these features automatically. Although some
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approaches exist for similar images [49], in most systems the user is required to define the features

by hand. To compute a transformation the initial and target image are warped in such a way that

the specified key features are mapped onto their equivalents. The actual frame is then computed by

interpolating the pixel values of the warped images. Different methods for specifying key features

exist:

1. Mesh Warping [125]

A mesh is super-imposed on both the initial and the target image. The mesh is deformed by

hand in such a way that vertices lie at key points of the image and the mesh edges trace the

contours of key features. Figure 2.41 shows an example of grid fittings for a given initial and

target image.

1 2

Figure 2.41: Meshes superimposed on the initial and the target image. A warp can be computed by interpo-
lating the meshes. Images courtesy of George Wolberg [125]

By linear interpolation of the meshes the initial picture can be transformed into the target

picture. The pixels in the intermediate pictures are a weighted combination of the initial

and the target image pixel values at the interpolated grid positions. To generate smoother

transformations, splines can be fitted to the mesh and interpolated instead of the linear mesh

segments. This approach is limited to warps which preserve the topology of the image and

do not fold.

2. Field Morphing [11]

Specifying warp meshes is not always easy. Field morphing allows a more efficient specifi-

cation of the transformation. The transformation between the two images is defined by pairs
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of user specified corresponding lines in the initial and the target image. Points which do not

lie on the line can be interpolated by their distance to the line. If multiple pairs of lines are

specified, a weighting according to the distance to a line is used for the interpolation. By

marking a few key features such as the eyes or the mouth a warp can be efficiently specified.

Field morphing is comparatively slow. As every pixel value depends on all lines, warps with

a lot of features become quite expensive to compute. Feature specification also requires skill

and experience from the artist as an unfortunate choice of feature lines can produce annoying

artifacts.

3. Radial Basis Functions / Thin Plate Splines [92]

Instead of specifying lines as in the field morphing approach, features are identified by the

user in the form of point pairs in the initial and the target image. Two smooth surfaces can

be derived from this input. If feature pointk has coordinates(uk, vk) in the initial image

and coordinates(xk, yk) in the target image then the surfaces can be interpolated from the

points(xk, yk, uk) and(xk, yk, vk). Scattered data interpolation techniques such as thin plate

splines or radial basis functions can then be used to define the actual warp function.

4. Multilevel Free-Form Deformation [67]

A much faster approach is the Multilevel Free-Form Deformation. Feature specification is

done using points, polylines and curves. In this approach curves can be efficiently defined by

using energy minimizing splines, calledsnakes, which automatically adapt to contours in the

image. The warp function is defined using free form deformation manipulation and guided

by a hierarchy of control lattices. The derived transformation is continuous and one-to-one.

The correlation of features is usually implicitly specified by the user during the feature definition.

If complex structures such as polygons are allowed for feature specification then the problem of

finding point correlations and transformations between the shapes arises. Although approaches

exist for identifying shape correlations [97], in most systems this has to be done by hand.

Although these methods are very sophisticated and produce stunning results when transform-

ing photo-realistic images into one another, we found that they are not well suited for animating

changes in visualizations of relational data. We used three publicly available warping systems to

compute example transformations between the two graph drawings shown in figure 2.42. The fea-

tures were specified by hand identifying structurally important nodes and edges in the initial and
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target drawing. The results are presented in figures 2.43, 2.44, and 2.45.

1 2

Figure 2.42: To evaluate the use of standard warping methods to relational information visualization publicly
available warping systems were used to transform image 1 into image 2

1 2 3
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Figure 2.43: Results for Morpher 2000

Some problems become immediately obvious. The animations do not create the effect of mov-

ing nodes and edges but rather the effect of one drawing dissolving into the other. This creates good

results for photo realistic images. In a graph visualization context however we would like to see the

nodes actually move to their destinations. Another major problem is that changes between graph
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Figure 2.44: Morphman

drawings often imply changes in the layout topology. This fact poses a major problem for warping

techniques as most approaches explicitly try to prevent changes in the image topology.

Morphing Several techniques have been developed to transform two dimensional shapes such as

polygons into one another. After determining the initial and target position of a vertex in a shape,

a motion path between the two locations has to be computed. Apart from the previously discussed

option of moving the point on a straight line the following approaches have been developed:

1. The Intrinsic Solution [96]:

Instead of interpolating the vertex positions of the shape, intrinsic properties such as angles

and edge length are interpolated. This technique does not work well with polygons where

many vertices lie very close to each other and does not work at all with coincident vertices.

2. The Wavelet Shape Blending Solution [109, 130]:

The Haar Wavelet Transform can be used to reduce the number of vertices in a polygon.

After this transformation intrinsic interpolation can be applied. This approach does not work
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Figure 2.45: WinMorph

well with shapes containing many vertices. It also tends to produce intermediate shapes with

broken lines.

3. The Star-Skeleton Blending Solution [99],

To transform two polygons into one another they are decomposed into star shaped pieces each

consisting of vertices of the polygon and a star origin. A star shape is a polygon which con-

tains at least one point, the star origin, from which all points on the boundary of the polygon

are visible. After decomposing the polygons we can build a skeleton of the polygon by con-

necting the star origins with the midpoints of the edges shared by star polygons. A morphing

of the polygons can be derived by applying a linear interpolation between the skeletons. This

method strongly depends on the initial distribution of vertices.

Again these techniques are not feasible for transforming visualizations of relational data. Apart

from the shortcomings mentioned in the description of the techniques, there are additional restric-

tions of some approaches, for example that the shape must be a closed polygon. This makes mor-

phing techniques unusable for our purposes.
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2.4 Visual Perception

Visual perception, especially the perception of motions is a highly complicated task. Major parts

of the human brain are dedicated to the processing of visual input, and, so far, computer scientists

have not been able to reproduce the human abilities in this area on computers. The human brain

is able to derive all information which is necessary to interpret movements in the environment

from the changing images projected on the retina of the eyes. Visual motion perception is further

complicated by the fact that different kinds of movements can produce identical retinal images. The

perceived images when our body moves are the same as when only our eyes move or if the complete

visible environment moves. Of course, all of these movements can also happen concurrently. In

addition objects can move within the environment, or rather not move in the retinal image if our

eyes follow that object, for example flying birds watched through the window of a moving train. To

be able to efficiently perceive and correctly understand movements in our environment is a basic

necessity for our everyday life. And indeed, we interact successfully with the world most of the

time totally unaware of the complex analysis of the retinal images that is necessary to do so.

For an in depth introduction to human perception see [6, 98]. The special case of the perception

of moving pictures is addressed in [1, 36, 100].

2.4.1 Apparent Motion

Not all perceived movements are the result of real objects actually moving between places in the

real world. When we watch TV we perceive motion of objects on the screen. Of course there are

no real objects changing their positions on our TV screen. It is rather the changing images on the

screen that induce the illusion of motion. Several forms of apparent motion have been identified

[6]:

1. Alpha movement

Alpha movement is apparent motion resulting from sequentially presented optical illusions.

Figure 2.46 shows an example. It displays the famous Müller-Lyer figure. The upper hor-

izontal line is perceived to be shorter than the lower horizontal line, although they actually

have the same length. If the two horizontal lines are shown sequentially the horizontal line is

perceived to shrink and expand.
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Figure 2.46: The Müller-Lyer figure. The upper horizontal line is perceived to be smaller than the lower
horizontal line although they actually have the same length. When displaying the two lines consecutively the
line appears to shrink and expand.

2. Beta movement

Beta movement is perceived when two objects are displayed in succession. Instead of two

objects we perceive one moving object. Animations are based on this kind of movement and

we exploit this phenomenon for creating animations in the remainder of this thesis. To create

the illusion of a motion several technical criteria have to be met. Among others, the targets

must be sufficiently close to each other, the time interval has to be right and the targets have

to have the right intensity. Korte (see [6]) investigated these factors and found that once the

illusion of motion is established it can be maintained even if one of these criteria is altered.

Compensating alterations to the other criteria have to be made however. According to Korte

distance is proportional to time and intensity whereas intensity is reciprocal to time. It is very

easy to fulfill these criteria by imposing some constraints on the frame rate and the speed of

objects on the screen. As we never had a case where these constraints were actually violated

in practice, we do not investigate this point in more detail in this thesis.

3. Gamma movement

When the level of illumination is suddenly raised we perceive a radial outward directed mo-

tion. We perceive an inward movement when the illumination is lowered. Gamma movement

is perceived if the illumination of the whole visual field is changed as well as when it is

changed only for specific parts of the visual field.

4. Delta movement

Delta movement is related to beta movement. When the intensity of the second object is

much higher than the intensity of the first object, in addition to the forward movement we

finally perceive a backward movement of the object.
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Human visual perception is also closely linked to other cognitive processes. Whenever we per-

ceive visual input the brain automatically tries to interpret what it ”sees”. That is, we automatically

attribute causality relations or role interpretations to moving objects. Figure 2.47 shows an exam-

ple. When watching the animation we automatically attribute the movement of the second ball as

the result of a collision with the first ball.
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Figure 2.47: When perceiving an animation the brain automatically tried to interpret what it sees. In this
case we perceive the movement of the second circle as the result of the collision with the first circle.

The phenomenon shown in figure 2.47 is only one example of a large and complex set of rules

and methods (in computer science we would call them heuristics) which the brain developed during

evolution. Without these roles it would be impossible to qualify and interpret the large amount of

visual information to which we are constantly exposed in the form of retinal images. To identify

and understand these mechanisms has been the focus of a long history of research on human per-

ception. Gestalt theory is one of the most important theories about human perception of static and

dynamic images and some of the animation techniques introduced in the following chapters are

based on principles derived from this theory. We introduce Gestalt theory therefore briefly in the

following section. We also relate the results of Gestalt theory to our main application, visualization

of relational information. The content of this section is partly drawn from a joint work with Keith
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Nesbitt [79].

2.4.2 Gestalt Theory

Perception of visual structure and form, even in stationary images is difficult. A complicated issue

is that the overall picture we perceive often seems to extend its component parts. This phenomenon

is often described by the saying “the whole is more than the sum of the parts”, or in terms of

graph drawing, “by looking at individual nodes we do not necessarily learn much about the overall

structure of the graph”. The Gestalt principles were developed to help explain these holistic char-

acteristics of perception. One of the most appealing properties of these principles is that they are

themselves simple to state, understand and apply.

Gestalt Psychology was developed in the 1900s to help counter the associationist view that

visual stimuli are perceived as parts and then built into complete images. About 1910, German

researchers Max Wertheimer, Wolfgang Köhler, and Kurt Koffka rejected the prevailing models

of scientific analysis in psychology and used the principles of field theory to explain cognitive

processes which could not previously be explained without a holistic viewpoint [98]. In particular

Werthheimer studied the illusion of motion pictures orapparent motion.

Gestalt is the German word for form. The Gestaltists proposed a theory of pattern perception

that relies on the overall form and is not predictable by only considering individual properties of its

components. Factors that impact on the perception of form and impact on how parts are grouped

into structural forms are captured in what are called theGestalt Principles of Organization. The

importance of these concepts to art and design were explored at the Bauhaus by such artists as Paul

Klee, Wassily Kandinsky and Josef Albers.

Our mental mapof the information underlying a specific drawing of a graph is very dependent

on the perceived form or structure of the overall layout. Gestalt principles describe how many

elements presented together tend to become grouped into distinct patterns. Hence, these principles

strongly influence how the components of a graph drawing, the nodes and links are organized and

perceived as a whole.

In the following section we illustrate the Gestalt principles briefly with examples taken from the

domain of graph drawing. To demonstrate the significance of the Gestalt principles some examples

(Figures 2.49, 2.50, 2.51, 2.53, 2.54) were especially designed in a way that the perceived structure

is not equivalent to the real structure of the graph as defined by the edge relations. The following

discussion is based on the description of the Gestalt principles as it is given in [52].
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The Law of Simplicity

Every stimulus pattern is seen in such a way that the resulting structure is as simple as possible.

1 2 3

Figure 2.48: Some drawings (1) allow multiple interpretations of the underlying structure (2,3). Most people
automatically perceive the more simple structures (2) instead of also possible but more complicated ones (3)

The law of simplicity states that we tend to perceive ambiguous structures (Figure 2.48.1), to

be made up of simple shapes (Figure 2.48.2) and reject more complicated, but theoretically also

possible, combinations (Figure 2.48.3).

The Law of Familiarity

Things are more likely to form groups if the groups appear familiar or meaningful.

Figure 2.49: The law of familiarity states that we perceive structures that appear familiar such as a rectangle
in this figure.

The particular arrangement of the nodes and edges in figure 2.49 leads us to perceive a square.

However, there is no such structure in the underlying graph.
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The Law of Similarity

Similar things appear to be grouped together

Figure 2.50: The law of similarity states that similar things, such as the black nodes in this graph tend to be
grouped together.

When looking at figure 2.50 our brain immediately identifies 5 groups of nodes. The grouping

is solely based on the colour and arrangement of the nodes. The edge structure of the graph does

not reflect such a clustering.

The Law of Good Continuation

Points that, when connected, result in straight or smoothly curving lines, are seen as belonging

together, and the lines tend to be seen in such a way as to follow the smoothest path[52]
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Figure 2.51: The law of good continuation states that we perceive smoothly curving lines and straight lines
in smooth paths. In picture (1) we see the drawing of a graph. No special structures are perceived. In picture
(2) we see the same graph drawn with different node positions. This time we perceive the nodes to be part of
curved lines.

Figure 2.51 shows two possible drawings of the same graph. In image 2.51.2 our brain identifies

three strings of nodes. Drawing 2.51.1, however, does not show such structures.



2.4 Visual Perception 68

The Law of Connectedness

Things that are physically connected are perceived as a unit.(Figure 2.52).

Figure 2.52: The law of connectedness states that we perceive connected objects as a single structure. Hence
we see here two connected graph components.

Figure 2.52 shows a grid of nodes. The edges let us easily distinguish two groups of nodes.

Most traditional graph drawing approaches are based on this principle.

The Law of Proximity

Things that are near to each other appear to be grouped together(Figure 2.53).

Figure 2.53: This picture displays a grid graph. Due to the special layout of the nodes the law of proximity
makes us perceive four columns of nodes instead of a grid.

The law of proximity states that we perceive objects that are close in space to be part of the

same structure. In figure 2.53 the spatial arrangement means that our brain perceive four groups of

paired columns even though it is theoretically possible to devise other groupings, for example, by

row.
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The Law of Common Fate

Things that are moving in the same direction appear to be grouped together.(Figure 2.54).

Figure 2.54: The law of common fate states that we perceive objects that move together to be part of the
same structure (the second column).

Figure 2.54 shows three different drawings of the same graph. The node column in the middle of

the drawing uniformly change their positions between the three drawings. Our brain automatically

groups these nodes together. In this thesis we explicitly use this principle in theCluster Analysis

animation method in section 6.2 from page 234.
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Model

In the main part of this thesis we introduce methods for computing animations in information vi-

sualization environments. To be able to do this in a formal and well defined way we introduce

some definitions which specify the nature of animation problems in this chapter. Based on these

definitions we develop criteria and measures for comparing the visual quality and the efficiency of

different animation methods.

Further, we present a general framework for systems providing animations in information visu-

alization contexts. This framework is later restricted to the specific problem domain of relational

information visualization which we cover in detail in the main body of this thesis.

Finally in this chapter, we introduce a suit of benchmark tests which we later use to empirically

evaluate and compare the quality of the proposed animation methods. The benchmark suit consists

of graph visualizations drawn from real world applications, as well as visualizations which are

specifically designed to challenge graph animation methods.

3.1 Definitions

Information visualization has many formal definitions. For the purpose of this thesis we use the

conventions presented in the following sections. Although they are not derived from any specific

existing work, they nevertheless follow the general approach used by most publications in this field.

To display a data item, it is usually associated with a graphical representation. We call this

graphical representation a “glyph”:

Definition 3.1.1 (Glyph) A glyph is a displayable graphical entity which can be used to represent

data. It consists of a two or three dimensional shape definition, as well as graphical attributes such

as texture, colour, or transparency.
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Glyphs are the basic building blocks of any “visualization”. To display a glyph, for example on

a computer screen, we assign a “location” to this glyph which determines where it is to be displayed.

The “location” should also specify the orientation with which the glyph is displayed.

Definition 3.1.2 (Location) A locationspecifies the position and orientation of a glyph in two or

three dimensional space.

A specific mapping of the elements of a data set to glyphs and locations gives us a well defined

way of displaying that data set. In practice, however, most “visualizations” usually contain further

graphic attributes. The glyphs are usually displayed in front of a specific background. This can be a

simple background colour or a complex scenery. We call this the “environment” of the “visualiza-

tion”. The “environment” can also contain information about the spectator, for example in the form

of camera position and orientation.

Definition 3.1.3 (Visualization) A visualizationV = (E,D,G,L, λ), consists of an environment

specificationE and a mappingλ : D → (G, L) of a set of data itemsD to a set of glyphsG and

locationsL.

Not all elements of the data set have to be represented by a glyph in a visualization. It is possible

that several items are represented by one glyph, or that certain items are not represented at all.

During an “animation” we want to smoothly transform one visualization into another. This

means that we have to apply continuous functions to the glyphs, locations and environment of the

initial visualization which transform them into their equivalents in the target visualization. For our

purposes we assume that such a transformation for the given glyphs, locations, and environments al-

ways exists. For most display devices, such as computer screens, this is trivially true. For example,

simple pixel interpolation would already satisfy continuity for glyph and environment transforma-

tions. As the locations are considered to be always specified in a continuous coordinate space, a

continuous transformation between the locations of the glyphs also always exists. As the trans-

formations are continuous, we know that there must also exist a distance function for the domain

and image of each transformation. That is, we know that there must be a distance function for the

glyphs, locations, and environments. This allows us to define a distance function for visualizations

which can be smoothly transformed into one another:



3.1 Definitions 72

Definition 3.1.4 (Distance between Visualizations)Given two visualizationsV1 andV2 of a data

setD and distance functions between the environments (E), the glyphs (G), and the locations (L)

we define thedistance between visualizationsV1 andV2 as:

∆ (V1, V2) = E (E1, E2) +
∑
d∈D

G (π1 (λ1 (d)) , π1 (λ2 (d))) +
∑
d∈D

L (π2 (λ1 (d)) , π2 (λ2 (d)))

with πx(v) being the projection on thexth dimension of vectorv.

We deliberately do not exactly specify the individual distance functions between environments,

glyphs or locations as they strongly depend on the chosen representations and may vary from appli-

cation to application. We require however that they are distance functions in the strict mathematical

sense, that isG, L, andE must form metric spaces. Using this distance function∆, we can define

“animation” as:

Definition 3.1.5 (Animation) An animationAD of a data setD is a function from[0 . . . 1] to the

space of visualizationsV which assigns a visualizationv ∈ V displayingD to each timet ∈

[0 . . . 1]. The animationAD is continuous in the interval[0 . . . 1]. That is, for everyε > 0 there

exists aδ > 0 such that∆ (AD (t1) ,AD (t2)) < ε, for all |t1 − t2| < δ.

Using these definitions we can formulate the problem of computing an information visualization

animation:

Information visualization animation problem

Given a data setD and a sequence of visualizationsV0, V1, . . . , Vn of D, “efficiently”

compute a “good” animationAD with AD (0) = V0,AD (1) = Vn, and for alli,j with

0 < i < j < n there existsti andtj with 0 < ti < tj < 1 such thatAD (ti) = Vi and

AD (tj) = Vj .

An in depth discussion of the here intuitively used notions of “efficient” and “good” can be

found in section 3.2.

In the remainder of this thesis we focus on animation techniques for two dimensional visual-

izations of relational data as one specific area of information visualization. Although some results

from our research can be generalized to other areas, the introduced methods are often optimized to

take advantage of properties specific to graph visualization. This restriction allows us to introduce

the following, more specific definition of an animation.
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Definition 3.1.6 (General 2D graph animation) A 2D graph animationis an animation with the

following restrictions. The data setD consists of the nodes and edges of the graph. The set of glyphs

consists of simple closed polygons for nodes and poly-lines for edges. Both nodes and edges may

have further graphical attributes such as colour, line thickness, fill patterns and others. Locations

consist of two dimensional coordinates and one dimensional rotational orientations.

This is the first work specifically addressing the problem of computing good graph animations.

The number of free parameters in the definitions that we have presented so far, however, is too

large to cover completely within the scope of one thesis. We have decided to focus on a small set

of parameters which we regard to be most critical. Our selection of parameters is based on the

following observations:

• The graphical environments in which visualizations are set can have many different forms.

It is therefore almost impossible to devise general animation methods for environment trans-

formations. Further, in most cases we can expect the environment to consist of a single

background colour which does not change. We therefore do not discuss environment trans-

formations.

• There exists a wide range of warping methods, such as the ones presented in chapter 2.3.5,

which can be used to animate transformations between shapes and textures of glyphs. We

therefore do not investigate this point further and assume that the shapes of glyphs stay con-

stant between visualizations.

• The problem of identifying point correlations for edges with a changing number of bends

between visualizations can be approached using the morphing methods described in chapter

2.3.5 and we therefore restrict our investigations to graph visualizations which do not contain

edge bends.

The reduced set of parameters is reflected in the following further restricted formulation of the

graph animation problem:
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Definition 3.1.7 (Basic graph animation) A basic 2D graph animation is a 2D graph animation

with the following restrictions:

• node glyphs are considered to have a fixed orientation and shape.

• edge glyphs are straight lines and their location and orientation is implicitly defined by the

glyphs of their source and target node.

• the only graphical attribute considered is colour.

• the environment is empty.

This definition is used as the basis for all animation methods and measures described in this thesis,

and we use the termgraph animationas a synonym for basic graph animation throughout. Some

approaches might contain exceptions, however, and we point them out where appropriate.

So far we have treated animations as a continuous transformation between visualizations. To

compute the actual frames of an animation and display them on a computer screen we have to

discretise the animation. We do this by sampling the animation function for appropriate values oft.

The sampling methods are straightforward and not discussed further in this thesis.

We further assume that for most applications the list of key-frames contains only two entries.

This means that we discuss multi-key-frame behavior in the analytical evaluation, but restrict actual

experiments to two key frame scenarios.

It is obvious that for any given graph animation problem instance there are an infinite number

of valid solutions which vary significantly in the quality of the output and the efficiency with which

they can be computed. In the next sections we introduce criteria and measures which define the

quality and efficiency of animation methods and thus enable us to compare different approaches.

3.2 Quality Measures for Graph Animations

The overall goal of a graph animation is to help the user to efficiently maintain or adjust the mental

map of a changing graph drawing. Major changes to the drawing of a graph usually occur when a

user applies a layout algorithm which provides a different view of the graph or when the structure

of the graph changes in such a way that makes it necessary to recompute the layout. Examples of

structural changes in graphs are collapsing or expanding sub graphs in clustered graphs, navigation

in infinite graphs (for example www-based graphs) or graphs encoding dynamically changing data,
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such as graph A of the 1999 Graph Drawing Contest. Graph A of the 1999 Graph Drawing Contest

describes the relationships between the characters of a popular German soap opera. The characters

of the soap opera, and especially their relationships, change over time. Figure 3.1 shows part of a

poster displaying this graph.

Figure 3.1: Part of a poster showing the characters and relationships within a popular German soap opera

We have identified the list of criteria which we present in the following sections to have a strong

influence on achieving the goal of creating an efficient animation. These criteria were derived

using theoretical considerations, adopted from existing results in graph drawing [8, 85, 86, 87] and

cognitive psychology [36, 100], or are based on empirical data gathered by personal experience and

user feedback. Note, that a controlled empirical evaluation and ranking of these criteria by HCI

experiments would be necessary to validate these criteria. The lack of precedent research in graph

animations, however, implies that we need to explore the solution space first.
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Where possible, we derive formal measures for the criteria. As we will see in the following

sections, this is not possible in all cases. The discussion of the quality of our animation methods is

therefore split into two parts: a strictly formal evaluation where we apply the specified measures as

well as an informal evaluation reflecting other criteria.

We can identify three major categories of criteria: technical criteria, static criteria, and dynamic

criteria.

3.2.1 Technical Criteria

Technical criteria describe the general conditions which are necessary to compute and present an

animation. Generally, the technical framework in which an animation method is embedded has to

be able to display approximately 25 frames per second. At 18 frames per second the animation is

noticeably jerky. Early movies were filmed and projected at 18 frames per second, resulting in the

well known jerkily distorted movements of the actors. At about 10 frames per second the illusion

of motion breaks down completely. Two key factors determine the projection speed.

1. The computational cost to compute an animation

This point is a major concern in all our methods. Our general goal is to provide real time

animations to a user interacting with a graph visualization system. This is only possible if

the frames can be computed fast enough before or during the animation. Any computation

that has to be performed before the animation is displayed bears a high risk of noticeably

increasing the response time of the system. Only extremely efficient algorithms can be used

here. Although being a very strict and obviously true criteria, it is not well suited as a mea-

sure. Whether an animation method can achieve the goal of producing 25 frames per second

very much depends on the actual implementation of the animation method and the platform

it is executed on. We therefore use a more abstract measure. A method is considered to be

superior to another method regarding computation time, if it has a smaller computational time

complexity than the other method. A better time complexity does not guarantee a noticeably

better performance for a given problem instance, however; both methods could be too slow

or fast enough. We can, however, expect the method with better time complexity to scale

better for scenarios involving increasing graph sizes and thus be applicable to a wider range

of problem instances.

During the benchmark experiments we measure the actual computing time for both measures.
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For the reasons stated above, the recorded times for the animation methods can only mean-

ingfully be interpreted as relative to each other. Two further complications regarding this

point have to be mentioned. Firstly, measured time values can be inaccurate. We are able

to measure the total time between start and completion of an operation, but we cannot deter-

mine how much of this time was spent on the actual algorithm and how much time was spent

by the system doing unrelated tasks such as context switches, paging, or garbage collection.

In cases where we suspected external influences to have skewed the results of a particular

experiment we discarded the results and repeated the experiment. Secondly, in several cases

the execution time was close to the maximum resolution of the time measuring method. All

results are only correct up to +/-1 millisecond.

We use two measures: First the computational cost for preparing the animation (Init) and

second the cost for computing each frame (T/F).

Measure 1 (Animation pre-processing cost (Init))The animation pre-processing cost is the

complexity class of the operations that are performed after the key frames are specified and

before the animation can start. We assume that the number of key frames is a small constant

for all considerations.

We want the user to get the impression that the animation starts immediately after the user

input is finished. This means, that the computations which are necessary at this stage should

not take longer than the time necessary to display a small constant number of frames. That is,

if we assume a linear time complexity for displaying a frame, it seems sensible to require that

the preprocessing time for the whole animation does not exceedO (n log n) for an interactive

system.

Measure 2 (Frame computation cost (T/F))The frame computation cost (T/F) is the high-

est complexity class for computing a frame over all frames during an animation.

If the complexity of computing a frame is significantly higher than the cost of displaying

the frame, then we can expect the overall performance of the system to decrease noticeably.

Assuming a linear time complexity to display a frame, we therefore require that an animation

method has a maximum linear time complexity for computing each frame in order to be

considered efficient.
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2. The time necessary to display computed image

The frames not only have to be computed fast enough, they also have to be displayed fast

enough by the system. With big graphs and large displays this can become a problem. How-

ever, as all our approaches are independent of this step we ignore it in further discussions.

We assume that the system which embeds the animation methods is always able to guarantee

a playback rate of at least 25 frames per second.

3.2.2 Static Criteria

Each frame of a graph animation displays a drawing of a graph. It seems sensible to deduce that

the quality of an animation is influenced by the quality of each drawing. This allows us to use the

large body of results which exist on evaluating the quality of static graph drawings [8, 85, 86]. The

following criteria seem to have the strongest influence on the quality of a static drawing [87]:

1. Number of edge crossings

Edge crossings make it difficult to determine the source and target nodes of an edge. A

drawing with fewer edge crossings seems to be easier to understand. Edge crossings can be

easily counted in a static drawing. We use the following measure to reflect this criteria.

Measure 3 (Static edge crossings (SEC))Given a graph animationAG of a graphG =

(V,E) consisting ofn framesF0, F1, . . . , Fn the static edge crossings index of an animation

is defined as follows:

sec =
1

n + 1

n∑
i=0

∑
e1,e2∈E

σsec (e1, e2, Fi)

with

σsec (e1, e2, F ) =


1 if e1 ande2 cross in frameF ,

0 otherwise.

andn being the number of frames in the animation.

2. Direction of flow, Number of bends, Orthogonality

Although thedirection of flow, number of bends, andorthogonalityare important criteria

for static drawings we decided not to use them in our evaluation. Thedirection of flowis
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important when users try to trace directed paths in the graph. This is very likely to occur

during an animation, and we thus do not consider this criteria. The number of bends is

defined by the key drawings and the animation algorithm has little influence on that. On the

contrary it would be rather confusing if the initial drawing and target drawing contain many

bends and the animation temporarily removes them. Orthogonality requires nodes to lie on

grid positions. This can generally not be achieved during a continuous animation; even if we

allow isometric transformations of the grid.

3. Display of non-existing structures should be avoided.

An often neglected problem in graph drawing is the case where the drawing suggests some

structure which does not exist in the graph [123]. Figure 3.2 shows an example for two

different layouts of the same graph. The second layout could lead the user wrongly to assume

that the graph is a simple path. Similar problems can easily occur during an animation, as the

human brain tends to be quite imaginative when it tries to interpret moving images [98]. We

discuss this point informally where relevant.

Figure 3.2: Example of a misleading layout

3.2.3 Dynamic Criteria

In addition to the technical and static criteria which we discussed so far, several dynamic, graph

animation specific, criteria can be identified.

1. The path of the nodes and edges should be smooth

Mathematically a functionf is considered to be smooth if the derivative of the function is

continuous, that isf ∈ Cx. The vector spaceCx is the space of all functions which can be

continuously derivedx times. It can be argued whether the intuitive notion of “smoothness”
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of a functionf can be measured by the largest value ofx for which f ∈ Cx [25, page 56].

For the purpose of this thesis a functionf is considered to be smooth iff ∈ C1.

Measure 4 (Smoothness)A graph animation is considered to be smooth if the functions

describing the node and edge transformations are inC1.

2. Uniform node movement

If the distance between two nodes in the initial frame is similar to their distance in the target

frame, then we would like to see them maintain this distance in all intermediate frames;

especially if the two nodes lie comparatively close to each other in the initial and target

frames. The optimal distance between two nodes at any given time is considered to be the

weighted average of their initial and their target distances.

Measure 5 (Uniform node movement (UNM)) Given an animationAG of a graphG =

(E, V ) and a distance functiond(u,v) : [0 . . . 1] → IR measuring the distance between the

positions of two nodesu ∈ V andv ∈ V at timet, uniform node movementis defined as:

unm =
∑

u,v∈V

∫ 1

0

(
d(u,v) (t)−

(
(1− t) d(u,v) (0) + td(u,v) (1)

))2
dt

To evaluate the results of an actual experiment consisting ofn frames we use the discrete

formulation:

unm =
1

n + 1

∑
u,v∈V

n∑
t=0

(
d(u,v)

(
t

n

)
−
((

1− t

n

)
d(u,v) (0) +

t

n
d(u,v) (1)

))2

3. Constant edge length

If the length of an edge in the initial frame is similar to its length in the target frame, then the

edge should maintain this length during the whole animation. The optimal length of an edge

at any given time is considered to be the weighted average of its initial and target length. This

measure is similar touniform node movement, but stresses the distinguished role of nodes

which are connected by an edge:
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Measure 6 (Constant edge length (CEL))Given an animationAG of a graphG = (E, V )

and a distance functiond(u,v) : [0 . . . 1] → IR measuring the distance between the positions

of two nodesu ∈ V andv ∈ V at timet, constant edge lengthcan be measured as:

cel =
∑

(u,v)∈E

∫ 1

0

(
d(u,v) (t)−

(
(1− t) d(u,v) (0) + td(u,v) (1)

))2
dt

To evaluate the results of an actual experiment consisting ofn frames, we use the discrete

formulation:

cel =
1

1 + n

∑
(u,v)∈E

n∑
t=0

(
d(u,v)

(
t

n

)
−
((

1− t

n

)
d(u,v) (0) +

t

n
d(u,v) (1)

))2

It is obviously true thatconstant edge lengthis always smaller or equal touniform node

movement. Although it is tempting to assume that “UNM≤ f (G) CEL” holds for some

graph propertyf (G), this is generally not true. Figure 3.3 illustrates this. Let us assume

a node distance and edge length preserving transformation of figure 3.3.1, for example a

rotation by180o as shown in figure 3.3.3. Let us further assume that figure 3.3.2 is a frame of

a possible animation of this scenario. Clearly, edge length is preserved in this frame and CEL

is zero. However, as the distances between the diagonally opposite nodes change, uniform

node movement is not given: UNM> 0. No property of the graph can make CEL larger than

UNM in this case.

1 2 2

Figure 3.3: Example illustrating that generally “UNM≤ f (G) CEL” does not hold.

4. Minimize temporary edge crossings.

Edge crossings in a graph drawing generally reduce readability. This is also valid for anima-

tions. If the animation avoids introducing unnecessary edge crossings on the way, then it is

easier for the user to follow the movements. If two edges which did not cross before suddenly

cross each other, then this imposes an additional cognitive load on the user. In this measure
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we count changes of edge crossings. As it is a discrete counting, no continuous formulation

of this measure exists.

Measure 7 (Temporary edge crossings (TEC))For a given graph animationAG of graph

G = (E, V ), temporary edge crossingsis defined as:

tec = lim
n→∞

n∑
t=1

∑
e1,e2∈E

σtec (e1, e2, t)

with

σtec (t, e1, e2) =


1 if e1 ande2 do not cross in frame t-1, but cross in frame t,

0 otherwise.

andn being the number of frames in the animation.

To measure the results of an actual experiment consisting of a fixed, finitie number ofn

frames, we use:

tec =
n−1∑
t=1

∑
e1,e2∈E

σtec (e1, e2, t)

5. Minimize node path length

To decrease the response time of the system, the animation should be as short as possible. If

the maximum path of all nodes is small, then the animation can be performed more precisely

in the given time and thus is easier to follow.

Measure 8 (Node path length (NPL))For a given graph animationAG of a graphG =

(E, V ) and functionsxv (t) and yv (t) giving thex and y coordinates of nodev at timet,

node path lengthis defined as:

npl =
∑
v∈V

∫ 1

0

√
(x′v (t))2 + (y′v (t))2dt

We assume thatxv (t) andyv (t) are at least piece-wise differentiable. In the case that the

functions are not totally differentiable we simply add up the integrals over the pieces. When
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evaluating results of actual experiments consisting ofn frames, we use the discrete formula-

tion:

npl =
∑
v∈V

n∑
t=1

√(
xv

(
t− 1

n

)
− xv

(
t

n

))2

+
(

yv

(
t− 1

n

)
− yv

(
t

n

))2

6. Maintain a minimum distance between nodes which do not move uniformly.

If nodes lie close to each other, then it is more difficult to follow their individual movements

than if they are further apart. However, if two nodes lie next to each other in the initial

drawing and in the target drawing, it would be better to move them uniformly and lying close

to each other to their destination, than to separate them first. We also found that if two nodes

intersect only briefly, then it is easier to follow their movements than if they intersect for a

longer time. As we have no clear empirical evidence to define an optimal minimal distance

we only take into consideration whether nodes do actually overlap or not. We derive the

following measure counting changes in node intersections:

Measure 9 (Unnecessary node intersections (UNI))Given a graph animationAG of a graph

G = (V,E), unnecessary node intersectionsis defined as:

uni =
∑

v1,v2∈V

∫ 1

0
σuni (v1, v2, t) dt

with

σuni (v1, v2, t) =


1 if v1 andv2 intersect at timet,

0 otherwise.

To evaluate the results of an actual experiment consisting of a fixed number ofn frames, we

use:

uni =
1
n

∑
v1,v2∈V

n−1∑
t=1

σuni

(
v1, v2,

t

n

)

7. Maximize symmetry

Symmetry in a graph drawing helps the user to understand the structure of a graph. In an an-

imation symmetry of movement makes it easier to understand the structure of the movement.

A formal measure for symmetric node movement can probably be derived by extending the

model in [72], but is not without problems. Especially symmetric motions which cannot be
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directly derived from static symmetries of the individual frames, so they exist, would have

to be investigated in detail. Due to the computational complexity compared to the small

numbers of cases showing symmetries we did not implement a formal measure for this case.

Where appropriate, we give an informal discussion on expected behavior of a method regard-

ing symmetry.

8. Maximize use of automated cognitive sub-systems

As we have seen in the discussion of perceptional mechanisms in section 2.4, the human brain

has a predisposition for certain ways of perceiving visual information. Complex analysis and

structuring of the visual input is performed by automated, independent cognitive subsystems.

We can expect the amount of communicatable information to increase if part of the cognitive

load can be shifted from general problem solving areas of the brain to automated sections.

For example, humans are very good at recognizing and interpreting human facial expressions.

Chernoff tried to exploit this fact in his work on encoding information as facial expressions

[21].

On the other hand we can expect the cognitive load to increase if the animation is counter-

intuitive. For example, if an object is translated and rotated at the same time, experiments

have shown [36, 100] that we expect the object to perform the translation on an arc instead of a

straight line. It is difficult to derive a general mathematical formulation of these mechanisms,

although it is possible for some special cases. For example, our brain is highly specialized for

perceiving and processing movements of three dimensional rigid objects in space. Projected

on the plane, these transformations are identical to the set of affine linear transformations in

IR2. We exploit this feature in theLinear Regression Analysisanimation method in section

6.1.1.

As no general formulation of how to measure the utilization of cognitive sub-systems is

known, we discuss this point informally where appropriate.

Some of the metrics which we presented in the previous sections and combinations of some

of these metrics are NP-hard to optimize. An extensive overview of the computational complexity

of the static metrics can be found in [8, section A.6, pp. 354-358]. The dynamic metrics are not

so easily approachable by the traditional methods of computational complexity. We investigate the

following problem in detail: Given a scenario, we want to answer the question whether it is possible
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to transform the initial drawing into the target drawing with the optimum value of zero forconstant

edge lengthandtemporary edge crossings. We can show that this involves a well-known NP-hard

problem, called theRuler Folding Problem[124]. TheRuler Folding Problemis defined as follows:

Definition 3.2.1 (String graph) A string-graph is a connected graph of degree 2.

Definition 3.2.2 (Ruler Folding Problem) Given a string-graph withn edges where each edge

has a fixed length and the edges are allowed to rotate freely around their nodes, can the string

graph be folded in such a way that it occupies a line segment of length at mostk?

Consider the scenario in figure 3.4. The graph underlying the scenario consists of two con-

1 2

Figure 3.4: Scenario illustrating that optimizingconstant edge lengthandtemporary edge crossingsat the
same time is generally NP-hard. Moving the green subgraph into the lower section of the enclosed space
requires it to fold onto a line segment of fixed size. Deciding whether this is possible is known to be NP-hard
[124].

nected components. We refer to the (grey) outer component as theframeworkand to the (green)

inner component as theruler1. The faces of theframeworkare triangles and there exists a path

from the interior of each triangle to the interior of each other triangle through adjacent triangles of

the framework. The resulting structure is therefore rigid. This means that we cannot deform the

frameworkin any way that changes angles or distances between the nodes without increasing the

values forconstant edge length. Theruler consists of a string graph and has to move from the upper

section into the lower section of the space enclosed by theframework. To do this it has to pass a

“barrier” which is formed by three interlocked triangles of theframework. The initial drawing with

the associated roles is displayed in figure 3.5. The barrier-triangles lie arbitrarily close to each other

and thus do not allow any significant deformation or rotation of theruler while it is in the barrier

1See also figure 3.5.
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Figure 3.5: Image 1 from the scenario displayed in figure 3.4. The parts important for this scenario have
been labelled appropriately.

section. Let us further assume that the enclosed area before and after the barrier is sufficiently large

to easily allow all necessary folding operations without any temporary edge crossings. Letk be the

distance between the rightmost end point of the left barrier triangle and the base of the other two

barrier triangles. In order to move theruler to its target position without changing the length of

any edge and without introducing any edge crossing we have to fold it onto a line segment of size

at mostk. To decide whether this is possible is equivalent to the Ruler Folding Problem which is

known to be NP-hard [124]. We can thus state:

Theorem 3.2.1 Minimizing constant edge lengthand temporary edge crossingsduring a graph

animation is NP-hard.

It is easy to see that this theorem also holds for connected graphs. We can modify figure 3.4 by

connecting theruler to the endpoint of the left barrier-triangle with an additional string graph. This

additional string graph can consist of an arbitrary number of arbitrary small line segments, thus not

interfering while the ruler moves through the barrier section.

In many cases not all criteria can be optimized in one solution. For example, it might be nec-

essary to move nodes along a non-optimal path to avoid edge crossings, or it might be preferable

to accept some edge crossings instead of watching the graph untangle in a complex and confus-

ing way. Thorough HCI experiments would be necessary to apply a ranking or even weighting to
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these criteria. However, these are beyond the scope of this thesis. We therefore treat the measures

independently and give an informal discussion on the observed importance of individual measures

where appropriate.

To be able to evaluate and compare the different animation methods which we introduce in this

thesis, we apply each animation method to a suit of benchmark tests which we introduce in section

3.4. During the benchmark tests we record the measures which we have described in this sec-

tion. To which degree the recorded measures approximate the continuous measures depends on the

quantization of the animation function. To ensure that the recorded measures can be meaningfully

compared we require that all animations have the same length, that is 101 frames in our case. It can

be argued that for more complex animation scenarios, longer animation times could help the user in

understanding what is happening on the screen. Although this is probably true for HCI experiments,

it does not affect the purely numerical experiments which we conduct in this thesis. To ensure that

the measured results are comparable between different scenarios and animation methods, we fur-

ther require that the regulator function which is used to control the speed during the animation is

the identity function.

3.3 Framework for Graph Animation Methods

A graph animation method has to compute an animation according to a given list of visualizations

of that graph. We assume that the method has full access to all necessary information, that is, node

and edge correlation between visualizations, as well as access to position and glyph information.

We can identify the following tasks that a graph animation method has to perform:

1. Analyze the list of visualizations and devise an animation strategy.

2. Repeatedly compute frames between two key frames.

We assume that the embedding graph visualization system is able to display the frames once

they are computed. We look at these steps in detail in the following sections.

3.3.1 Analyze Input and Devise an Animation Strategy

The input for a graph animation method consists of a list of graph visualizations. They define the

key frames of the animation. The animation method has to analyze these visualizations and devise
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an animation strategy. As this task has to be completed before the first frame is shown, it is essential

that it can be performed very efficiently in interactive systems.

3.3.2 Compute Animation Frames

During the animation between two key frames we expect the nodes and edges to change their

positions and move to their destinations. However, this is not possible for all nodes and edges. If, for

example, a node exists in the initial frame, but does not in the target frame, then no motion for this

node can be specified. We might, however, want to animate the vanishing of this node. To just leave

the node at its initial position and let it fade away while the other nodes move to their destinations is

generally not a good solution. If the other nodes of the graph perform a very structured movement,

such as a rotation, then the vanishing nodes can destroy this structure by unnaturally staying at their

initial positions. This observation leads to the following three independent parts of an animation.

Compute pre-motion frames During the pre-motion stage all animations should be executed

which cannot sensibly be done during the motion phase. Examples are fade outs for node and edges

which do no longer exist in the target key frame.

Compute motion frames During the motion phase the nodes and edges move between the key

frame positions. To display the animation on a computer screen, it is necessary to discretise the

animation function. The animation method has to be able to provide the appropriate frames for the

resulting discrete values of timet ∈ [0 . . . 1]. Two approaches are possible:

1. The animation method provides a function which is able to compute a frame for an arbitrary

value oft. The speed of the movement can be controlled by modifyingt using an appropriate

regulator function. Examples of commonly used speed functions are shown in figure 2.30 on

page 39. We use this approach for most of the proposed methods.

2. Not all animations methods are able to provide such a function as we will see in section 5.1 on

page 146. We therefore alternatively allow an animation method to iteratively produce a pre-

viously fixed number of frames. The animation method has to provide a function with which

the number of frames for the animation can be set. Animation methods which implement this

approach are usually not able to adjust the speed of the animation once it has started.
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Additional transformations such as changes in colour or shape can also take place during the

motion phase.

Compute post-motion frames Similar to the pre-motion phase, we allow a post-motion phase to

perform final animations which do not make sense during the motion phase. Examples are fade ins

of nodes and edges which did not exist in the initial key frame but do exist in the target key frame.

3.4 Benchmark Suit

In addition to the analytical evaluation of each animation method, we also conduct experiments to

gather empirical data. The scenarios on which the experiments are based were designed to reflect

real world situations, as well as especially challenging artificial situations. We introduce these

scenarios in the following sections.

3.4.1 Scenario 1

Scenario 1 is based on a graph taken from a dataflow analysis tool for telecommunication services.

It contains 158 nodes and 232 edges. The node labels have been removed on request by the owner.

The initial and the target drawing are shown in figure 3.6. The initial drawing, shown in figure

3.6.1 was created using a Sugiyama style layout algorithm. The drawing displays the hierarchical

structure of the data. Hierarchical approaches such as Sugiyama style algorithms usually add bends

to edges to reduce edge crossings in the drawing. As we only consider graphs with straight edges,

all bends have been removed from the scenario. The target drawing, shown in figure 3.6.2 was

created using a spring embedder algorithm. The second drawing displays proximity information

about the data by positioning those nodes close to each other which are connected by an edge.

3.4.2 Scenario 1b

Scenario 1b uses the same drawings as scenario 1. This time however the role of the initial and the

target drawing are reversed.

3.4.3 Scenario 2

Scenario 2 shows a180o degree rotation of a graph. The initial and the target drawings are shown in

figure 3.8. The graph is taken from the demo-graph selection of the Metis graph clustering tool. It
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1 2

Figure 3.6: Scenario 1: A dataflow graph. Image 1 shows the initial drawing which was generated using a
Sugiyama style algorithm. Image 2 shows the same graph drawn using a spring embedder algorithm.

1 2

Figure 3.7: Scenario 1b: A dataflow graph. Image 1 shows the initial drawing which was generated using
a spring embedder algorithm. Image 2 shows the same graph drawn using a algorithm Sugiyama style
algorithm.

contains 1036 nodes and 1868 edges. Rotations by large angles seem to pose significant problems

for naive animation techniques. For example, moving the nodes on a straight line from their initial

positions to their target positions would result in the graph collapsing to a single point during the

animation.

1 2

Figure 3.8: Scenario 2: The initial and the target drawing show the rotation of a graph by180o.
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3.4.4 Scenario 2b

Scenario 2b shows a180o degree rotation of the same graph which was used in scenario 2. In

addition to the rotation, all nodes were displaced by a small random offset after the rotation. The

scenario is shown in figure 3.9. This scenario challenges methods which try to analyze the initial

and target drawing to find structured movements.

1 2

Figure 3.9: Scenario 2b: The initial and the target drawing show the rotation of a graph by180o. In addition
all nodes were displaced by a random offset after the rotation.

3.4.5 Scenario 3

Scenario 3 shows a scenario where sub-graphs move in different ways. The graph is a tree and it

is drawn using a traditional tree layout algorithm in figure 3.10.1. To be able to have a closer look

on a particular sub-tree, the sub-tree is drawn twice as big in figure 3.10.2. To make room for the

bigger sub-tree, another sub-tree is rotated to the top. The graph contains 177 nodes and 176 edges.

1 2

Figure 3.10: Scenario 3: This scenario consists of two drawings of a tree. To be able to have a closer look on
a particular sub-tree of image 1, the sub-tree is drawn twice as big in image 2. To make room for the bigger
sub-tree, another sub-tree is rotated to the top
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3.4.6 Scenario 4

Scenario 4 shows a communication network. The nodes of the graph represent telephones and two

nodes are connected if there has been a call between these phones. These kinds of graphs are used

in criminal investigations. The was taken from category B of the 1996 graph drawing competition

of the International Symposium on Graph Drawing. As the original initial drawing contained edges

with bends, the bends have been replaced by dummy nodes in this scenario. The target drawing was

created by applying a spring embedder algorithm to the graph. The graph contains 120 nodes and

202 edges.

1 2

Figure 3.11: Scenario 4: Different drawings of a communication network. Nodes represent telephone num-
bers. Two nodes are connected if there has been a call between these two numbers.

3.4.7 Scenario 5

Scenario 5 also shows data from a telecommunication network. The nodes of the graph represent

telephone numbers and two nodes are connected if there has been a call between the numbers.

The graph was taken from category C of the 1997 graph drawing competition and contains 345

nodes and 626 edges. The initial drawing and the target drawings were computed by using a spring

embedder algorithm. Some clusters of nodes are collapsed in the initial and the target drawing and

are thus only visible in one drawing. The scenario is shown in figure 3.12. Image 3.12.1 shows the

initial drawing and figure 3.12.4 shows the target drawing. In image 3.12.2 the nodes which exist in

the initial drawing but are hidden in the target drawing are painted grey. In image 3.12.3 the nodes

which exist in the target drawing but are hidden in the initial drawing are painted grey.
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1 2

3 4

Figure 3.12: Scenario 5: A communication network. Nodes represent telephone numbers. Two nodes are
connected if there has been a call between these two numbers. Some clusters of nodes are only visible in
either the initial or the target drawing. Image 1 shows the initial drawing and image 4 shows the target
drawing. Image 2 shows the nodes not visible in drawing 4 painted grey. Image 3 shows the nodes not visible
in the initial drawing painted grey.

3.4.8 Scenario 6

Scenario 6 is taken from category B of the 2000 Graph Drawing competition. It displays a social

network indicating how often members of a team in a company communicate with each other, with

clients, and with domain experts. The graph is displayed in figure 3.13. Drawing 3.13.1 shows

the graph with a circular layout. All nodes are placed on a circle around a virtual origin. Drawing

3.13.2 shows the same graph drawn using a force directed layout algorithm. The graph contains

100 nodes and 213 edges.

3.4.9 Scenario 7

Scenario 7 is a six bit shift-register graph and was featured in category B of the 1999 [14] graph

drawing competition. The graph can also be seen as two intertwined trees. The graph contains 64

nodes and 126 edges. The two drawings of the graph in figure 3.14 show the result of applying

traditional tree layout algorithms to the two trees contained in the graph. This scenario is especially

challenging for methods based on regression analysis as many nodes are on the same line.
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1 2

Figure 3.13: Scenario 6: Two different drawings of a graph which encodes a social network. Image 1 shows
the graph drawn with a circular layout algorithm. Image 2 shows the same graph drawn by a force directed
layout algorithm.

1 2

Figure 3.14: Scenario 7: The graph encodes a six bit shift-register. Both drawings were generated by a
modified tree layout algorithm. Different nodes were used as roots of the “trees” in the two drawings.

3.4.10 Scenario 8

Scenario 8 features a fractal graph2. The drawing in figure 3.15.1 shows the graph drawn using a

force directed layout algorithm. Figure 3.15.2 shows the graph drawn in a diagonal, fractal fash-

ion. This scenario is challenging as edge lengths and relative node positions change significantly.

Containing 2559 nodes and 4092 edges the graph is also comparatively large.

In the following chapters we use the introduced framework and the criteria discussed in section

3.2 to develop methods which compute animations using a variety of paradigms and foci. We evalu-

ate these approaches analytically as well as measure their performance conducting the experiments

outlined in section 3.4. We also compare the developed methods to existing approaches where

possible.

2A fractal graph consists of a pattern that is recursively repeated over several levels
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1 2

Figure 3.15: Scenario 8: The graph is artificial and does not encode any real world data. This scenario is es-
pecially challenging for animation algorithms as lengths and relative positions of nodes change significantly.



C H A P T E R 4

Naive Methods for Graph Animations

Although graph drawing systems have been around for several decades, little serious research has

been conducted in the area of general graph animations. Some naive or specialized techniques of

animating changes in graph layouts however exist in several graph drawing tools, for example AGD

[119] or D-ABDUCTOR [77]. In this chapter we introduce and investigate these approaches.

4.1 Direct Linear Interpolation

4.1.1 The Method

The most intuitive way to move an object from a pointA to another pointB is on the straight line

connecting the two points. This approach has actually been implemented in some existing systems,

for example AGD [119]. We can therefore formulate the following animation method between two

key frames:

1. Remove nodes and edges which appear in the first frame but do not appear in the second

frame.

Several approaches are possible. Nodes could just disappear, slowly fade out, or move to

some position outside the visible screen area. We do not discuss these strategies in detail

and for our purposes assume that nodes and edges fade out as it appears to be a feasible and

non-controversial method.

2. Move all nodes and edges on a straight line towards their target position

Given a graphG = (V,E) the position of each nodev ∈ V at timet during the animation is

given as:



4.1 Direct Linear Interpolation 97

Pv (t) = (1− t) Pv (0) + tPv (1)

The speed of the movement can be controlled by modifyingt using a regulator function as

described in section 3.3 on page 87.

3. Add nodes and edges which did not exist in the first frame, but do exist in the second frame.

This step is equivalent to step 1 and similar approaches are possible. Nodes could just appear,

slowly fade in, or move to to their positions from somewhere outside the visible screen area.

For our purposes we assume that nodes and edges fade in as it appears to be a feasible and

non-controversial method.

This procedure can be repeated between each pair of key frames in a multi-key-frame scenario. As

a variation, the node positions can be interpolated using spline curves if more than two key frames

are specified.

4.1.2 Analysis

1. Time to initialize the animation (Init)

TheDirect Linear Interpolationmethod is very static and no pre-processing is necessary in

a two key-frame scenario. All necessary computations can be made during the animation. In

multi-key-frame scenarios where is spline interpolation is used to compute the node paths, it

is sensible to compute the spline curves only once in the beginning. The computational cost

in such cases is linear in the number of key frames and the number of nodes. Assuming a

constant number of key frames theDirect Linear Interpolationmethod is sufficiently fast, as

defined in section 3.2 from page 74.

2. Time to compute each frame (T/F)

The computational cost for each frame is insignificant. The position of each node in a frame

can be computed with a small constant number of computations.

3. Static edge crossings (SEC), constant edge length (CEL), temporary edge crossings (TEC),

unnecessary node intersections (UNI)

TheDirect Linear Interpolationmethod does not explicitly consider these criteria. It is not

difficult to construct scenarios which exhibit arbitrarily bad behavior for these measures. For
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example, in the case of a uniform180o rotation of a graphG = (V,E) around its center, all

nodes intersect at some point during the animation. The resulting value forunnecessary node

intersections(UNI) is |V |(|V |−1)
2 . Similar examples for the other measures exist.

4. Smoothness

The movement is smooth1 between two key frames. Using linear interpolation the movement

is generally not smooth over multiple key frames, with an abrupt change of direction expected

at each key frame. Using spline interpolation a smooth motion over all key frames can be

guaranteed.

5. Uniform node movement (UNM)

If the underlying transformation of the graph is very simple, for example a uniform translation

of the whole graph, theDirect Linear Interpolationmethod achieves the optimal value 0 for

uniform node movement(UNM). However, for more complex motions, such as rotations,

this is no longer true. Scenario 2 on page 89 illustrates this. In scenario 2, all nodes could

theoretically move uniformly to their target positions by performing a rotation around the

center of the graph. TheDirect Linear Interpolationmethod, however, is not able to find or

describe this particular kind of motion and achieves bad results foruniform node movement.

More generally, let us consider the general case of a180o rotation of a graphG = (V,E)

around its center. To simplify calculations, let us further assume without loss of generality

that the center of the graph is located at the origin. Performing a pure180o rotation of

the whole graph around its center would result in the optimal value zero foruniform node

movement. We now investigate the value foruniform node movementthat we get if we apply

the Direct Linear Interpolationmethod to this scenario. Theuniform node movementis

defined as:

unm =
∑

u,v∈V

∫ 1

0

(
d(u,v) (t)−

(
(1− t) d(u,v) (0) + td(u,v) (1)

))2
dt.

As the distance between nodes in a pure rotation is constant we can simplify this expression

to:
1For the definition ofsmoothas it is given in section 2.3.5 on page 50.
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unm =
∑

u,v∈V

∫ 1

0

(
d(u,v) (t)− d(u,v) (0)

)2
dt.

The underlying transformation is a180o rotation of the whole graph. Thex andy coordinates

of each nodev ∈ V during the animation are thus given by:

Xv (t) = (1− t) Xv (0) + t (−Xv (0))

Yv (t) = (1− t) Yv (0) + t (−Yv (0)) .

SubstitutingXv andYv in unm, we get:

unm =
∑

u,v∈V

∫ 1

0

(√
(Xv (t)−Xu (t))2 + (Yv (t)− Yu (t))2 − d(u,v) (0)

)2

dt

this yields:

unm =
∑

u,v∈V

4
3

(
−2Xu (0)Xv (0)− 2Yu (0)Yv (0) + Xu (0)2 + Yu (0)2 + · · ·

· · ·Xv (0)2 + Yv (0)2
)

=
4
3

∑
u,v∈V

d(u,v) (0)2

This means that we can provoke arbitrarily bad behavior by choosing initial node positions

which are far apart from each other. Furthermore, as the distances between all pairs of nodes

are considered,uniform node movementgrows quadratically in respect to the number of nodes

in the graph.

6. Node path length (NPL)

When using theDirect Linear Interpolationmethod,node path lengthis always minimal, as

all nodes move on the shortest possible path. When using spline interpolation, we can expect

an essential tradeoff betweennode path lengthand the degree of smoothness. The higher the
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derivability of a function, the higher the likelihood that it contains unwanted “spikes”2 which,

unnecessarily, increase the node path length.

4.1.3 Empirical Evaluation

In this section we describe the performance of theDirect Linear Interpolationanimation technique

on our benchmark scenarios. For each scenario we give nine snapshots from the actual animation.

Further we give some informal remarks about the performance of the method where appropriate.

We also give a table and a bar chart graphic which display the recorded measures for the cur-

rently discussed method, as well as the median and the best result for each measure over all methods.

The values in the bar chart are normalized to the range zero to one with the worst result for each

measure over all methods being scaled to one. This allows a rough classification of the method in

respect to the other methods. A detailed comparison of the methods can be found in chapter 7. It

should be noted that results in the rowbestare the independent best results for each measure and

not necessarily the results of the overall best method. In particular, this also means that there might

not even exist a method which can achieve all best results.

The electronic version of this thesis has the full animations embedded. Using an appropriate

display program, for example Adobe Acrobat Reader(TM) , the animations can be started by clicking

on any of the nine snapshots.

2For a discussion of spikes in point interpolations see section 2.3.5 on page 50
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Scenario 1

Figure 4.1 shows the resulting animation when applying theDirect Linear Interpolationmethod to

scenario 1. The numerical results of the animation in regard to our measures are summarized in the

1 2 3

4 5 6

7 8 9

Figure 4.1: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 1.

following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 130 5.020E+09 1,843,276 2,095 347,983 129 0 0.5

Best 40 2.484E+08 402,170 490 347,983 26 0 0

Median 87 2.656E+09 2,577,963 1,346 431,802 94 0 1.6
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Direct linear interpolation, Scenario 1
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As expected, theDirect Linear Interpolationmethod achieves optimal values regarding computa-

tion time (Init, T/F) andnode path length(NPL). For all other measures it is significantly worse

than the best method. For all measures butconstant edge length(CEL) it behaves, in some cases

significantly, worse than the median. It seems surprising that we see a better than median behavior

regardingconstant edge lengthbut not regardinguniform node movement(UNM). This behavior

can be explained by the fact that some methods try to optimizeuniform node movementwithout

specifically considering edges. During animations where nodes which are connected by an edge

are assigned to different groups of uniformly moving nodes, these methods can still achieve good

values foruniform node movementbut achieve bad values forconstant edge length.
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Scenario 1b

Figure 4.2 shows the result of applying theDirect Linear Interpolationmethod to scenario 1b. The

1 2 3

4 5 6

7 8 9

Figure 4.2: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 1b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 130 5.020E+09 1,843,276 2,138 347,983 129 0 0.0

Best 64 2.697E+08 395,880 533 347,983 19 0 0

Median 100 3.371E+09 2,146,880 1,409 465,534 108 0 5.1
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Direct linear interpolation, Scenario 1b
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Scenario 1b is identical to scenario 1 with exchanged initial and target drawing. As theDirect

Linear Interpolationmethod is symmetrical, we see the same results as before. Small differences,

for example fortemporary edge crossings(TEC), are due to the discrete approximation of some

measures.
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Scenario 2

Figure 4.3 shows the result of applying theDirect Linear Interpolationmethod to scenario 2. The

1 2 3

4 5 6

7 8 9

Figure 4.3: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 2.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 12,891 1.675E+10 212,992 1,301,941 440,110 3,813,032 50 1.6

Best 4 1.066E-20 0 374 440,110 0 0 1

Median 92 4.259E+08 13,608 3,468 662,794 24,579 270 4.7
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Direct linear interpolation, Scenario 2
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The Direct Linear Interpolationmethod show exceptionally bad results for scenario 2 regarding

most measures. Theoretically, scenario 2 can be animated with the optimal value zero for all mea-

sures butnode path length(NPL) and time (Init,T/F) by rotating the whole graph by180o around its

center. Rotations by large angles are a general problem for theDirect Linear Interpolationmethod.

The intermediate drawings are always distorted to a degree which is relative to the angle of the

rotation. In the case of a180o rotation, the graph is even collapsed to a single point at one stage.

This can be seen in figure 4.3.5.
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Scenario 2b

Figure 4.4 shows the result of applying theDirect Linear Interpolationmethod to scenario 2b. The
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7 8 9

Figure 4.4: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 2b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 9,681 1.670E+10 202,046 582,018 439,723 3,577,834 0 1.0

Best 105 6.805E+03 750 612 439,723 749 0 1

Median 347 4.339E+08 24,396 6,301 662,911 33,607 30 4.3
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Direct linear interpolation, Scenario 2b
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Scenario 2b is similar to scenario 2. Again the transformation of the graph is close to a180o rotation

and theDirect Linear Interpolationmethod shows the same typical graph distortions.
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Scenario 3

Figure 4.5 shows the result of applying theDirect Linear Interpolationmethod to scenario 3. The
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7 8 9

Figure 4.5: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 3.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 40 3.962E+08 114,892 4,055 94,772 23,519 0 0.6

Best 0 2.753E+07 720 0 94,772 0 0 0

Median 2 1.799E+08 35,772 51 128,102 245 0 1.1
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Direct linear interpolation, Scenario 3
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The transformation described in scenario 3 can theoretically be animated without a single edge

crossing or node intersection. Again, theDirect Linear Interpolationmethod achieves rather poor

results due to a large rotational component in the transformation of one sub graph.
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Scenario 4

Figure 4.6 shows the result of applying theDirect Linear Interpolationmethod to scenario 4. The
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Figure 4.6: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 4.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 190 2.877E+08 1,326,461 1,328 120,561 169 0 0.0

Best 164 9.562E+07 954,237 985 120,561 56 0 0

Median 196 2.991E+08 2,125,756 1,244 136,133 124 0 0.5
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Direct linear interpolation, Scenario 4
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The Direct Linear Interpolationmethod achieves comparatively good results in this scenario. In

all categories it is better or almost as good as the median. It is significantly worse than the best

algorithm in regard toconstant edge length(CEL), however.
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Scenario 5

Figure 4.7 shows the result of applying theDirect Linear Interpolationmethod to scenario 5. The
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Figure 4.7: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 5.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 420 1.470E+10 2,399,401 15,725 597,271 277 0 0.0

Best 308 3.088E+09 2,399,401 8,438 597,271 48 0 0

Median 505 1.198E+10 3,262,048 15,373 731,150 272 55 1.1
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Direct linear interpolation, Scenario 5
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Although theDirect Linear Interpolationmethod achieves results which are slightly better or at least

not significantly worse than the median for all measures, theDirect Linear Interpolationmethod

nevertheless fails to score close to best results in any category but the obligatorynode path length

(NPL) and time (Init, T/F).
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Scenario 6

Figure 4.8 shows the result of applying theDirect Linear Interpolationmethod to scenario 6. The
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Figure 4.8: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 6.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 7,095 2.385E+08 4,174,533 15,762 73,957 185 0 0.5

Best 4,853 1.147E+08 1,020,039 8,301 73,957 44 0 0

Median 6,777 2.077E+08 6,856,478 15,610 91,672 165 25 0.2
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Direct linear interpolation, Scenario 6
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TheDirect Linear Interpolationmethod achieves close to median but far from optimal results for

all measures butnode path lengthand time.
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Scenario 7

Figure 4.9 shows the result of applying theDirect Linear Interpolationmethod to scenario 7. The
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7 8 9

Figure 4.9: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 7.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 1,011 4.858E+07 90,948 4,975 25,170 2,692 0 0.0

Best 454 1.841E+07 71,857 2,905 25,170 77 0 0

Median 696 4.262E+07 816,052 4,631 45,283 198 25 1.1
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Direct linear interpolation, Scenario 7
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TheDirect Linear Interpolationmethod is significantly better than the median regardingconstant

edge length(CEL) in scenario 7, but also significantly worse than the median regardingunneces-

sary node intersections(UNI). This indicates an essential tradeoff between these to measures in

this scenario. This hypothesis is further supported by the results for the other methods. It is not

obvious by watching the animations ifconstant edge lengthor unnecessary node intersectionsis

the perceptually more important measure in this case. The author tends to favor the animation with

good values forunnecessary node intersectionsover the solution with good values forconstant

edge length, but this is only a subjective opinion and not based on scientific results. It would be

necessary to conduct extensive HCI studies to prove that this bias is actually a common tendency.
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Scenario 8

Figure 4.10 shows the result of applying theDirect Linear Interpolationmethod to scenario 8. The
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Figure 4.10: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theDirect Linear Interpolationmethod to scenario 8.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Linear 46,185 2.829E+09 4,138 2,112,739 290,510 7,427,591 50 7.2

Best 28,706 1.718E+08 4,138 289,169 290,510 1,256,611 0 4

Median 38,574 9.407E+08 18,486 1,971,003 357,359 2,192,830 80 13.7
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Direct linear interpolation, Scenario 8
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We note significantly bad values forunnecessary node intersections(UNI) anduniform node move-

ment(UNM). The latter is in notable contrast to the good values forconstant edge length(CEL),

where direct linear interpolation even achieves the best results of all methods. Again we can deduce

an essential tradeoff, especially as a comparison with other methods shows that they also have either

good values foruniform node movementor or constant edge length, but not for both.

4.1.4 Summary

TheDirect Linear Interpolationmethod produces results for many scenarios which are close to the

median. By definition, it always achieves optimal values fornode path length(NPL) and thus guar-

antees a short animation. The method requires an insignificant amount of time for preprocessing

and for computing each frame.

In cases which contain structured transformations, especially transformation with large rota-

tional components, theDirect Linear Interpolationmethod generally achieves very poor results for

static edge crossings(SEC), temporary edge crossings(TEC), uniform node movement(UNM),

constant edge length(CEL), andunnecessary node intersections(UNI).

The Direct Linear Interpolationmethod seems to be an appropriate animation method when
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little structure in the underlying transformations is expected. However, if such structure exists, then

other methods are generally preferable.
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4.2 Orthogonal Interpolation

4.2.1 The Method

The Orthogonal Interpolationmethod is similar to theDirect Linear Interpolationmethod. The

frames of the animation are computed by directly interpolating the differences between the initial

positions and the target positions of the nodes of the graph. In contrast to theDirect Linear Inter-

polationmethod, however, thex coordinates and they coordinates are interpolated independently.

That is, first thex coordinates are interpolated from the initial positions to the target positions and

subsequently they coordinates are interpolated. Although this approach seems to be quite simi-

lar to the direct interpolation approach, we found that the visual impression can be significantly

different. The human brain tends to interpret parallel movements of all parts of an object as a three-

dimensional rotation of the object in space. This has the effect that animations which are computed

by using theOrthogonal Interpolationmethod often create an optical illusion. In this illusion the

transformation of the graph is perceived as the rotation of a three dimensional graph instead of a

changing two dimensional graph. Although it is unclear if this actually helps in understanding the

changes, the resulting animation in most cases appears “aesthetically pleasing”. The purpose of this

section is to formally introduce this method and evaluate its properties against our measures.

Given a graphG = (V,E) the position of a nodev ∈ V at timet is given by:

Pv (t) =


(π1 (Pv (0)) , π2 (2tPv (0) + Pv (1) (1− 2t))) for 0 ≤ t ≤ 1

2 ,(
π1

(
2
(
t− 1

2

)
Pv (0) + Pv (1)

(
1− 2

(
t− 1

2

)))
, π2 (Pv (1))

)
otherwise.

This procedure can be repeated between each pair of key frames in a multi-key-frame scenario.

4.2.2 Analysis

The analysis of most measures in regard to theOrthogonal Interpolationmethod gives the same

results as for theDirect Linear Interpolationmethod (Section 4.1.2 on page 97). We therefore only

mention those measures here for which theOrthogonal Interpolationmethod behaves differently.

1. Smoothness

The movement is piecewise smooth. During the interpolation along each axis the motion is

smooth. At the point where the interpolated axis is changed, however, the direction of motion
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turns abruptly.

2. UNM

It is almost impossible for theOrthogonal Interpolationmethod to achieve the optimal value

zero foruniform node movement(UNM):

unm =
∑

u,v∈V

∫ 1

0

(
d(u,v) (t)−

(
(1− t) d(u,v) (0) + td(u,v) (1)

))2
dt.

The function

f (t) =
(
d(u,v) (t)−

(
(1− t) d(u,v) (0) + td(u,v) (1)

))2
is non-negative and continuous. Thus, for the sum of the integrals to be 0,f (t) must be 0

for all u, v ∈ V andt ∈ [0 . . . 1]. Let us consider the caset = 0.5 for fixed u andv and

d (t) = d(u,v) (t):

0 = (d (t)− ((1− t) d (0) + td (1)))2

0 = (d (t)− ((1− t) d (0) + td (1)))2

0 = d (t)− ((1− t) d (0) + td (1))

td (0) + td (1) = d (t)

0.5d (0) + 0.5d (1) = d (0.5)

0.5d (0) + 0.5d (1) =
√

(Xv(0)−Xu(0))2 · · ·

· · ·+ (2 ∗ 0.5Yu(0) + (1− 2 ∗ 0.5)Yu(1)) · · ·

· · · − (2 ∗ 0.5Yv(0) + (1− 2 ∗ 0.5)Yv(1)))2

0.5d (0) + 0.5d (1) =
√

(Xv (0)−Xu (o))2 + (Yu (0)− Yv (0))2

0.5d (0) + 0.5d (1) = d (0)

d (1) = d (0)

We have shown thatd(u,v) (1) = d(u,v) (0) is a necessary precondition for theOrthogonal

Interpolationmethod to be able to achieve zero foruniform node movement. Only two con-

tinuous, isometric transformations exist: rotation and translation of the whole graph. It is

clear that a rotation cannot be described by theOrthogonal Interpolationmethod. TheOr-
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thogonal Interpolationmethod can therefore only achieve optimal values foruniform node

movementin the special case of a uniform translation of the whole graph.

On the other hand, it is not difficult to provoke arbitrarily bad behavior. We consider the

following simple example. The graph consists of two nodesv1 andv2. Nodev1 is positioned

at the same coordinates in the initial and the target drawing and therefore does not move

during the animation. Nodev2 only changes itsx coordinate between the initial and target

drawing and therefore does not move during the first half of the animation. For the first

half of the animation the distance between the two nodes thus stays constant although it

should change according to the measure. By choosing appropriate initial and target positions

arbitrarily bad values foruniform node movementcan be provoked.

3. NPL

When using theOrthogonal Interpolationmethod,node path lengthis at most
√

2 times the

minimal node path legnth for each node.

4.2.3 Empirical Evaluation

In this section we describe the performance of theOrthogonal Interpolationanimation technique

on our benchmark suit. For each scenario we give nine snapshots from the actual animation, as

well as a table and a bar chart graphic displaying the results for the eight measures described in

section 3.2 from page 74. The table and the graphic display the results for the currently discussed

method, as well as the median results and the best results. We further include the results of the

Direct Linear Interpolationmethod from section 4.1. TheDirect Linear Interpolationmethod is

used almost exclusively to generate animations in currently existing systems. Including the results

for this method gives us an estimate on how much the currently discussed method could improve

existing systems.
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Scenario 1

Figure 4.11 shows the result of applying theOrthogonal Interpolationanimation method to scenario

1. The numerical results of the animation in regard to our measures are summarized in the following

1 2 3

4 5 6

7 8 9

Figure 4.11: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationanimation method to scenario 1.

table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 103 3.589E+09 3,418,826 1,990 439,772 256 0 0.6

Linear 130 5.020E+09 1,843,276 2,095 347,983 129 0 0.5

Best 40 2.484E+08 402,170 490 347,983 26 0 0

Median 87 2.656E+09 2,577,963 1,346 431,802 94 0 1.6
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Orthogonal interpolation, Scenario 1
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The results are similar to the results for theDirect Linear Interpolationmethod. We notice that the

results forunnecessary node intersections(UNI) andconstant edge length(CEL) for theOrthogonal

Interpolationmethod are significantly worse than the results for theDirect Linear Interpolation

method. However, the following sections show that this behavior is specific to this scenario and is

not a general trend.
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Scenario 1b

Figure 4.12 shows the result of applying theOrthogonal Interpolationanimation method to sce-

nario 1b. The numerical results of the animation in regard to our measures are summarized in the

1 2 3

4 5 6

7 8 9

Figure 4.12: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationanimation method to scenario 1b.

following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 145 5.206E+09 2,519,567 3,345 439,772 283 0 1.4

Linear 130 5.020E+09 1,843,276 2,138 347,983 129 0 0.0

Best 64 2.697E+08 395,880 533 347,983 19 0 0

Median 100 3.371E+09 2,146,880 1,409 465,534 108 0 5.1
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Orthogonal interpolation, Scenario 1b
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The nodes are always moved along they-axis first and then along thex-axis. This means that the

animation is generally not symmetric for exchanged initial and target positions. It is therefore not

surprising that the results for scenario 1b are not identical to the results for scenario 1.
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Scenario 2

Figure 4.13 shows the result of applying theOrthogonal Interpolationanimation method to scenario

2. The numerical results of the animation in regard to our measures are summarized in the following

1 2 3

4 5 6

7 8 9

Figure 4.13: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 2.

table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 6,811 5.489E+09 106,560 687,955 532,660 347,943 50 1.6

Linear 12,891 1.675E+10 212,992 1,301,941 440,110 3,813,032 50 1.6

Best 4 1.066E-20 0 374 440,110 0 0 1

Median 92 4.259E+08 13,608 3,468 662,794 24,579 270 4.7
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Orthogonal interpolation, Scenario 2
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Although the results forOrthogonal Interpolationmethod are significantly better than the results

for theDirect Linear Interpolationmethod, they are still far from the optimum in this scenario.
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Scenario 2b

Figure 4.14 shows the result of applying theOrthogonal Interpolationmethod to scenario 2b. The
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7 8 9

Figure 4.14: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 2b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 1,695 5.484E+09 103,893 72,066 532,091 322,941 0 2.1

Linear 9,681 1.670E+10 202,046 582,018 439,723 3,577,834 0 1.0

Best 105 6.805E+03 750 612 439,723 749 0 1

Median 347 4.339E+08 24,396 6,301 662,911 33,607 30 4.3
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Orthogonal interpolation, Scenario 2b
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The results for scenario 2b are consistent with the remarks for the previous scenarios.
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Scenario 3

Figure 4.15 shows the result of applying theOrthogonal Interpolationmethod to scenario 3. The
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Figure 4.15: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 3.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 24 3.194E+08 52,429 2,428 125,880 2,916 0 0.0

Linear 40 3.962E+08 114,892 4,055 94,772 23,519 0 0.6

Best 0 2.753E+07 720 0 94,772 0 0 0

Median 2 1.799E+08 35,772 51 128,102 245 0 1.1
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Orthogonal interpolation, Scenario 3
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The results for scenario 3 are consistent with the remarks for the previous scenarios.
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Scenario 4

Figure 4.16 shows the result of applying theOrthogonal Interpolationmethod to scenario 4. The
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Figure 4.16: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 4.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 389 6.645E+08 3,446,831 3,509 155,495 269 0 0.5

Linear 190 2.877E+08 1,326,461 1,328 120,561 169 0 0.0

Best 164 9.562E+07 954,237 985 120,561 56 0 0

Median 196 2.991E+08 2,125,756 1,244 136,133 124 0 0.5
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Orthogonal interpolation, Scenario 4
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The results of theOrthogonal Interpolationmethod for scenario 4 are significantly worse than the

results of most other methods, including theDirect Linear Interpolationmethod. The animation

itself, however, exhibits the same characteristic pseudo three-dimensional rotation as we have seen

in many other scenarios and looks “aesthetically pleasing”. The influence of the illusion of three-

dimensional movement seems to be strong, but it cannot be measured by our criteria.
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Scenario 5

Figure 4.17 shows the result of applying theOrthogonal Interpolationmethod to scenario 5. The
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Figure 4.17: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 5.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 1,174 1.245E+10 3,309,387 22,711 761,707 911 0 0.0

Linear 420 1.470E+10 2,399,401 15,725 597,271 277 0 0.0

Best 308 3.088E+09 2,399,401 8,438 597,271 48 0 0

Median 505 1.198E+10 3,262,048 15,373 731,150 272 55 1.1
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Orthogonal interpolation, Scenario 5
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We notice significantly bad values forstatic edge crossings(SEC) andunnecessary node intersec-

tions (UNI). Again, we experience the illusion of a three-dimensional rotation of the graph. The

animation itself is not convincing however. The story behind the changes to the graph, that is the

expanding and collapsing of clusters of nodes does not become apparent during the animation.
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Scenario 6

Figure 4.18 shows the result of applying theOrthogonal Interpolationmethod to scenario 6. The
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Figure 4.18: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 6.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 6,788 2.044E+08 4,528,321 19,494 94,808 144 0 0.0

Linear 7,095 2.385E+08 4,174,533 15,762 73,957 185 0 0.5

Best 4,853 1.147E+08 1,020,039 8,301 73,957 44 0 0

Median 6,777 2.077E+08 6,856,478 15,610 91,672 165 25 0.2
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Orthogonal interpolation, Scenario 6
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The results for scenario 6 are consistent with the remarks for the previous scenarios.



4.2 Orthogonal Interpolation 141

Scenario 7

Figure 4.19 shows the result of applying theOrthogonal Interpolationmethod to scenario 7. The
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Figure 4.19: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 7.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 873 4.028E+07 953,805 4,942 28,418 1,305 0 0.0

Linear 1,011 4.858E+07 90,948 4,975 25,170 2,692 0 0.0

Best 454 1.841E+07 71,857 2,905 25,170 77 0 0

Median 696 4.262E+07 816,052 4,631 45,283 198 25 1.1
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Orthogonal interpolation, Scenario 7
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The results for scenario 7 are consistent with the remarks for the previous scenarios.
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Scenario 8

Figure 4.20 shows the result of applying theOrthogonal Interpolationmethod to scenario 8. The
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Figure 4.20: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theOrthogonal Interpolationmethod to scenario 8.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Ortho 40,254 7.195E+08 22,157 2,002,272 372,986 1,470,055 50 4.2

Linear 46,185 2.829E+09 4,138 2,112,739 290,510 7,427,591 50 7.2

Best 28,706 1.718E+08 4,138 289,169 290,510 1,256,611 0 4

Median 38,574 9.407E+08 18,486 1,971,003 357,359 2,192,830 80 13.7
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Orthogonal interpolation, Scenario 8
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The results for scenario 8 are consistent with the remarks for the previous scenarios.

4.2.4 Summary

In most cases the orthogonal interpolation method produces “aesthetically pleasing” animations.

This is mainly due to the fact that the human brain often interprets the resulting motion of the graph

as a three-dimensional rotation of a rigid object in space.

As we have seen in scenario 4, this optical illusion can dominate all other criteria for good

animations. That is, although the measures are exceptionally bad, the animation shows the charac-

teristic three-dimensional illusion and is thus perceived as aesthetically pleasing.

Scenario 5, however, suggests that the fact that an animation is aesthetically pleasing does not

necessarily imply that it is also well suited for communicating the changes to a graph or helping

users adapt their mental map. Although the animation for scenario 5 shows the typical illusion and

looks aesthetically pleasing it is very difficult to understand what is happening to the graph. The

fact that clusters of nodes are expanded and contracted does not become obvious at all.

Orthogonal interpolation produces “good looking” animations in the majority of cases. Its use

as a special effect in the user interface of a graph drawing system can therefore be quite rewarding.
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We have seen, however, that this does not imply that orthogonal interpolation also achieves the

goal of helping users in adapting the mental map. The formal measures may be a better guide to

usefulness than the beauty of an animation.



C H A P T E R 5

Force Simulation Methods

The force directed paradigm tries to find a solution to a minimization problem by encoding the rele-

vant criteria as forces in a physical system. By simulating this system a solution to the minimization

problem can be found. Although it can generally not be guaranteed that the global minimum is

found, force directed approaches have shown good results in many applications. In this chapter we

develop models to formulate the graph animation problem as a physical system and compute anima-

tions by simulating these models. Force directed approaches are especially suitable for animations

as node positions are modified continuously, implicitly defining possible frames for an animation

by the iterations of the algorithm.

5.1 Force Directed Method

5.1.1 The Method

The well known and very popular spring embedder layout paradigm for graphs can be intuitively

adapted to compute graph animations. The traditional force directed layout algorithm applies two

kinds of forces to each node in order to compute a layout:

• Nodes repel each other with a force proportional to their distance.

• Nodes which are connected by an edge are repelled or attracted depending on whether they

are closer or further apart than the optimal edge length.

If the target layout is identical to the layout computed by the spring embedder algorithm then an

animation can be easily created by just displaying the graph after each iteration of node updates.

We can modify this approach to compute animations between arbitrary graph drawings. Given a

graphG = (E, V ) and an initial frameF0, as well as a target frameF1, F0, F1 : V → IR2, we can
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compute an animation between arbitrarily given start and end positions by replacing the traditional

forces with the following ones:

1. Nodes are attracted to each other or repelled from each other depending on whether their

distance is smaller or bigger than the linearly interpolated distance between their positions in

the initial and target frame. Given a functionPv : [0 . . . 1] → IR2 specifying the position of a

nodev ∈ V at timet, 1(v,u) (t) being the unit vector parallel to the vectorPu (t)−Pv (t), and

the distance functiond(u,v) (t) : [0 . . . 1] → IR determining the distance between two nodes

u, v ∈ V at timet of the animation, the nodes of the graph exert the following forces on each

nodev ∈ V at timet:

InterNodeForcev (t) =
∑

u∈(V \v)

1(v,u) (t)
(
d(u,v) (t)−

(
(1− t) d(u,v) (0) + td(u,v) (1)

))

2. Nodes are attracted by their target positions. The force of the attraction increases with the

duration of the animation. Given the current positionsFt : V → IR2 and the distance function

d : (V, V ) → IR, this exerts the following force on a nodev at timet:

TargetAttractionForcev (t) = Pv (1)− Pv (t)

Thus, given a weight functionT : [0 . . . 1] → [0 . . . 1] with T (0) = 0 andT (1) = 1, the force on

each nodev ∈ V at timet is given by:

Forcev (t) = (1− T (t)) InterNodeForcev (t) + T (t) TargetAttractionForcev (t)

Newton’s second law of motion states that force is equal to mass times acceleration:F = ma.

Assuming a mass of 1 we can use this law to compute the acceleration, speed and finally the position

for each node. The position of each node at timet is hence given by the following set of differential

equations:

Pv (t) =
∫ ∫

Forcev (t) dt, v ∈ V

This path definition computes node paths according to the simulated physical system. Unfortunately

it does not guarantee that the nodes are actually at their designated target positions at timet = 1.
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This is essential for a graph animation however. By simplifying the physical system and directly

interpreting the force applied to a node as its speed1, we can guarantee that all nodes reach their

target positions in time. We thus use the following path definition:

Pv (t) =
∫

Forcev (t) dt, v ∈ V

While inter-node relations dominate the simulation in the beginning the nodes become more and

more attracted by their target positions during the animation. Att = 1 the inter-node forces become

0 and the nodes move directly to their target position. It is thus guaranteed that the animation

terminates with all nodes at their target position.

The set of differential equationsPv (t) cannot be solved analytically. It can, however, easily be

approximated using standard numerical iteration methods. A problem arises when two nodes lie at

the same position. Although the resulting node and edge forces between these nodes are finite in

this case, the direction of the force is not specified. As the repulsive force between nodes does not

approach infinity for small distances between the nodes this case can actually happen, even in the

continuous model. In our algorithm we ignore forces which do not have a direction and rely on the

remaining forces to pull the overlying nodes apart. In practice we found this approach to work well

without any noticeable impact on the performance of the algorithm.

The influence of the balancing functionT on the speed of the animation is not straightforward

and very difficult to control in practice. Results for a given balancing function usually differ between

different animation problem instances. For the empirical evaluation of theForce Directedmethod

in section 5.1.3 we use the identity function forT .

The quality of the resulting animation is also dependent on the quantization. If only few frames

are displayed and thus the steps oft are large, the force vectors and therefore the nodes paths are

noticeably different to an animation with small steps oft. For the empirical evaluation of theForce

Directedmethod in section 5.1.3 we use 101 frames for each scenario.

5.1.2 Analysis

In animations which are generated by theForce Directedmethod, the paths of the nodes are only

given indirectly, as the solution of a non-linear set of differential equations. This set of equations

is not analytically solvable. A full analysis of most measures, however, would require that we have

1This is also known as Aristotle’s “law” of motion
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knowledge of the node paths. In this section we therefore make a few analytical remarks, without

giving a full analysis.

1. Init

All necessary computations are done during the animation. No preprocessing is necessary.

2. T/F

The computational cost for each frame is very high. As each node exerts a force on each

other nodeO
(
n2
)

operation have to be performed for each frame. This limits the application

of this method to small graphs.

3. UNI

The number ofunnecessary node intersectionsis directly addressed by theForce Directed

method through the inter-node forces. The tendency to avoid node intersections can be ad-

justed by changing the weight of the inter-node forces with respect to the target attraction

forces. Intuition tempts us to assume that we can avoid node intersections completely by us-

ing a high enough weight for the node repulsion forces. Unfortunately, intuition fails in this

case. Let us consider the pathological scenario illustrated in figure 5.1. The graph consists of

1 2

Figure 5.1: This scenario illustrates that node intersection can generally not be avoided by high weights for
inter node forces. As the target attraction forces directly oppose the node repulsion forces in this scenario,
the balancing function guarantees that the target attraction forces cancel the node repulsion forces at some
stage during the animation. The nodes, driven exclusively by the target attraction forces at this stage, then
intersect on their way to their target positions

only two nodes which swap their position from the initial drawing to the target drawing. The

target attraction forces are directly opposing the node attraction forces in this scenario. As

the node repulsion forces are finite, the balancing function guarantees that that at some stage
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the target attraction forces become stronger than the node repulsion forces and the two nodes

intersect.

4. UNM

The value of theuniform node movementmeasure is directly addressed by theForce Directed

method. The inter-node forces try to maintain uniform node distances while the target at-

traction forces move the nodes to their target positions. The balancing function increases the

weight of the target attraction forces in respect to the inter-node forces during the animation.

This means thatuniform node movementcan become worse towards the end of the anima-

tion if the Force Directedmethod was not able to identify a way in which the nodes can be

uniformly moved from their initial positions to their target positions.

5. CEL

Theconstant edge lengthmeasure is closely related to theuniform node movementmeasure.

In contrast to theuniform node movementmeasure, however, theconstant edge lengthmea-

sure only considers pairs of nodes which are connected by an edge. This seems to imply that,

indirectly, theForce Directedmethod also achieves good values forconstant edge length. In

many specific cases, however, this indirect support is not strong enough to guarantee good

values forconstant edge length: We found an essential trade-off betweenconstant edge length

anduniform node movementin many scenarios. Further, in most graphs which are based on

real world applications, the number of edges is linear in the number of nodes in the graph. For

theForce Directedanimation method, this means that a linear number of forces supporting

constant edge lengthis opposed by a quadratic number of forces supportinguniform node

movement. In these casesForce Directedanimations achieve comparatively bad results for

constant edge length.

6. Smoothness

The motion is the result of simulating a physical system. The resulting motion is therefore

smooth if an appropriate force simulation method is used.

7. NPL

Generally, the internode forces prevent the nodes from travelling on the shortest path to op-

timize other criteria. Target attraction forces prevent the nodes from assuming arbitrary long

paths however.
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5.1.3 Empirical Evaluation

Scenario 1

Figure 5.2 shows the result of applying theForce Directedmethod to scenario 1. The numerical

1 2 3

4 5 6

7 8 9

Figure 5.2: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 1.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 40 9.840E+08 3,312,649 701 423,831 26 0 55.0

Linear 130 5.020E+09 1,843,276 2,095 347,983 129 0 0.5

Best 40 2.484E+08 402,170 490 347,983 26 0 0

Median 87 2.656E+09 2,577,963 1,346 431,802 94 0 1.6
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Force directed interpolation, Scenario 1
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The Force Directedmethod achieves best overall results forstatic edge crossings(SEC),uniform

node movement(UNM), andunnecessary node intersections(UNI) in scenario 1. The good values

for unnecessary node intersectionsanduniform node movementare not surprising as these criteria

are explicitly represented by forces in the simulated system.

We also notice a comparatively bad result forconstant edge length(CEL). Although this seems

counterintuitive at first, asconstant edge lengthis equivalent touniform node movementwhen only

applied to a subset of the node-pairs of the graph, we also find this phenomenon in some of the

following scenarios. A detailed discussion which explains this phenomenon can be found in the

summary section for theForce Directedmethod on page 170.

It is difficult to control the speed of the animation in theForce Directedmethod. We notice that

the major part of the movements are completed in only 50% of the animation time in this scenario.
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Scenario 1b

Figure 5.3 shows the result of applying theForce Directedmethod to scenario 1b. The numerical

1 2 3

4 5 6

7 8 9

Figure 5.3: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 1b.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 64 1.574E+09 2,450,485 635 524,618 19 0 52.2

Linear 130 5.020E+09 1,843,276 2,138 347,983 129 0 0.0

Best 64 2.697E+08 395,880 533 347,983 19 0 0

Median 100 3.371E+09 2,146,880 1,409 465,534 108 0 5.1
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Force directed interpolation, Scenario 1b
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TheForce Directedmethod generally does not produce symmetric animations for exchanged initial

and target drawings. It is therefore not surprising that the results for scenario 1b differ from the re-

sults for scenario 1. Nevertheless, the force directed approach again achieves overall best results for

static edge crossings(SEC),uniform node movement(UNM), andunnecessary node intersections

(UNI). And, again we see comparatively bad results forconstant edge length(CEL).
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Scenario 2

Figure 5.4 shows the result of applying theForce Directedmethod to scenario 2. The numerical
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7 8 9

Figure 5.4: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 2.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 179 8.419E+08 27,090 6,358 634,338 49,158 0 2,943.1

Linear 12,891 1.675E+10 212,992 1,301,941 440,110 3,813,032 50 1.6

Best 4 1.066E-20 0 374 440,110 0 0 1

Median 92 4.259E+08 13,608 3,468 662,794 24,579 270 4.7
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Force directed interpolation, Scenario 2
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Although the force directed approach fails to find the optimal animation for this scenario (a180o

rotation of the graph), it succeeds, at least partially, to maintain the structure of the drawing during

the animation. The values are significantly better compared to theDirect Linear Interpolation

method in regard to most measures.
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Scenario 2b

Figure 5.5 shows the result of applying theForce Directedmethod to scenario 2b. The numerical
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7 8 9

Figure 5.5: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 2b.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 518 8.581E+08 37,058 11,203 635,514 47,201 0 3,647.9

Linear 9,681 1.670E+10 202,046 582,018 439,723 3,577,834 0 1.0

Best 105 6.805E+03 750 612 439,723 749 0 1

Median 347 4.339E+08 24,396 6,301 662,911 33,607 30 4.3
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Force directed interpolation, Scenario 2b
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The results are very similar to the results for scenario 2. For the following scenarios we present the

actual animation, the numeric values of the quality measures, as well as a graphical representation of

the measures. However, we only comment on the results in cases where theForce Directedmethod

shows behavior which is inconsistent with previous comments, or otherwise especially remarkable.
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Scenario 3

Figure 5.6 shows the result of applying theForce Directedmethod to scenario 3. The numerical
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Figure 5.6: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 3.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 1 1.477E+08 23,421 56 130,323 335 0 28.9

Linear 40 3.962E+08 114,892 4,055 94,772 23,519 0 0.6

Best 0 2.753E+07 720 0 94,772 0 0 0

Median 2 1.799E+08 35,772 51 128,102 245 0 1.1
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Force directed interpolation, Scenario 3
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The results for scenario 3 are consistent with the remarks for the previous scenarios.
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Scenario 4

Figure 5.7 shows the result of applying theForce Directedmethod to scenario b4. The numerical
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Figure 5.7: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 4.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 258 3.104E+08 4,685,660 985 141,709 56 0 11.3

Linear 190 2.877E+08 1,326,461 1,328 120,561 169 0 0.0

Best 164 9.562E+07 954,237 985 120,561 56 0 0

Median 196 2.991E+08 2,125,756 1,244 136,133 124 0 0.5
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Force directed interpolation, Scenario 4
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The results for scenario 4 are consistent with the remarks for the previous scenarios.
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Scenario 5

Figure 5.8 shows the result of applying theForce Directedmethod to scenario 5. The numerical
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Figure 5.8: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 5.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 327 5.029E+09 3,214,709 15,021 700,593 48 0 115.6

Linear 420 1.470E+10 2,399,401 15,725 597,271 277 0 0.0

Best 308 3.088E+09 2,399,401 8,438 597,271 48 0 0

Median 505 1.198E+10 3,262,048 15,373 731,150 272 55 1.1
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Force directed interpolation, Scenario 5
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The results for scenario 5 are consistent with the remarks for the previous scenarios.
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Scenario 6

Figure 5.9 shows the result of applying theForce Directedmethod to scenario 6. The numerical
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Figure 5.9: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 6.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 4,853 2.111E+08 9,190,151 15,458 84,447 44 0 8.3

Linear 7,095 2.385E+08 4,174,533 15,762 73,957 185 0 0.5

Best 4,853 1.147E+08 1,020,039 8,301 73,957 44 0 0

Median 6,777 2.077E+08 6,856,478 15,610 91,672 165 25 0.2
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Force directed interpolation, Scenario 6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SEC UNM CEL TEC NPL UNI Init T/F

Linear
Force
Best
Median

The results for scenario 6 are consistent with the remarks for the previous scenarios.
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Scenario 7

Figure 5.10 shows the result of applying theForce Directedmethod to scenario 7. The numerical
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Figure 5.10: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 7.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 518 1.841E+07 956,999 2,905 40,229 77 0 3.9

Linear 1,011 4.858E+07 90,948 4,975 25,170 2,692 0 0.0

Best 454 1.841E+07 71,857 2,905 25,170 77 0 0

Median 696 4.262E+07 816,052 4,631 45,283 198 25 1.1
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Force directed interpolation, Scenario 7
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The results for scenario 7 are consistent with the remarks for the previous scenarios.
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Scenario 8

Figure 5.11 shows the result of applying theForce Directedmethod to scenario 8. The numerical
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Figure 5.11: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theForce Directedmethod to scenario 8.

results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Force 28,706 8.743E+08 42,538 1,964,892 380,518 1,385,040 0 13,713.3

Linear 46,185 2.829E+09 4,138 2,112,739 290,510 7,427,591 50 7.2

Best 28,706 1.718E+08 4,138 289,169 290,510 1,256,611 0 4

Median 38,574 9.407E+08 18,486 1,971,003 357,359 2,192,830 80 13.7
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Force directed interpolation, Scenario 8
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The results for scenario 8 are consistent with the remarks for the previous scenarios.

5.1.4 Summary

TheForce Directedmethod produces perceptually pleasing animations in almost all cases. It does

not quite reach the same quality as specialized methods for certain specially structured scenarios,

but still tends to produce acceptable animations in these cases.

The aesthetic quality of theForce Directedmethod is also reflected by good values over a wide

range of measures and scenarios. We noticed, however, that theForce Directedmethod achieves

comparatively poor values forconstant edge lengthin some scenarios. This seems counter intuitive

at first, as theForce Directedmethod tries to optimizeuniform node movementandconstant edge

lengthis equivalent touniform node movementwhen only applied to a subset of all node pairs, that

is the edge set of the graph. TheForce Directedmethod therefore, implicitly, also tries to optimize

constant edge length. For most graphs the number of edges is linear to the number of nodes in the

graph. Thus, in cases where there is an essential tradeoff betweenconstant edge lengthanduniform

node movement, we can expect the forces which supportconstant edge lengthto be opposed by a

quadratic number of forces which supportuniform node movement. This results in bad values for
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constant edge lengthin these cases.

Despite its high aesthetic qualities, theForce Directedmethod has several serious drawbacks.

The most severe drawback is the high computational cost. In many of our benchmark tests2, for

example, the actual computational cost has been too high to allow the necessary frame rate of

approximately 25 frames per second. As theForce Directedmethod takesO
(
n2
)

time to compute

each frame, this problem cannot be solved by waiting for faster computers. The application of the

Force Directedmethod is therefore limited to small graphs or non-interactive systems.

Further, the actual motion paths are only implicitly given by a set of non-linear equations.

This set is not analytically solvable. As a consequence, theForce Directedmethod cannot provide

random access to an arbitrary frame, it does not allow reversal of the direction of the animation3,

and it is impossible to effectively control the speed of the animation.

Many variations of theForce directedmethod are imaginable. It is possible to increase the

emphasis on certain quality criteria by changing the weight ratio of the forces in the simulated

system. It is also possible to introduce additional forces or modify current forces for this purpose.

For example, the target attraction forces are currently modelled according to a spring force. Gravity

forces could be used here instead. Care has to be taken in all cases, however, that it is guaranteed

that all nodes end up at their target position at the end of the animation.

2Compare appendix A
3Unless all previous positions are explicitly recorded.
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5.2 3D Spring Embedder Method

5.2.1 The Method

The major drawback of the previous approach (section 5.1) is its high time complexity. Each frame

of the animation takesO
(
n2
)

computation time as each node has to be compared to each other

node. This makes the method unsuitable for realtime systems. The computationally expensive node

forces provide minimal distances between nodes during the animation, that is they act as a stabilizer

of the proximity structure of the graph drawing. If we can achieve a similar effect by adding a small

amount of edges to the graph we could avoid the time consuming computation of the node forces.

Furthermore, if we can compute the complete animation in the pre-processing phase of the

animation, we can allow for a slightly worse than linear time complexity for the computation. To

do this we build a three dimensional framework describing the animation. Thex − y plane of this

three dimensional space is identical to the two dimensional geometric plane we use for drawing the

graphs. Thez axis represents the time. This means, we can see the initial drawing of the graph

animation in the plane(x, y, 0) and the target drawing of the graph animation in plane(x, y, 1).

The intermediate frames are located in the planes(x, y, z), 0 < z < 1. We propose the following

approach:

1. Add a small number of “stabilizing” edges to the graph.

2. Define a constant number of additional key frames.

3. Duplicate the whole graph for each additional key frame. Place each graph copy on a specific

z coordinate.

4. Connect equivalent nodes between consecutivez-layers.

5. Set initialx andy coordinates for the nodes of each graph copy according to an interpolation

method. The nodes in the first layer must lie on the start positions of the animation and the

nodes of the last layer must lie on the target positions of the animation.

6. Simulate the edge forces in the three dimensional key frame graph. The nodes in the first and

last frame are static. Nodes are not allowed to leave theirz-plane.

7. The animation is shown as an interpolation along the key frames using a standard interpola-

tion method.



5.2 3D Spring Embedder Method 173

Figure 5.12 shows an example. The initial and the target drawing are displayed in figure 5.12.1 and

figure 5.12.2. Figure 5.12.3, 5.12.4, and 5.12.5 show snapshots of different views on the key frame

graph. Different values of grey indicate different key frames. The key frames are arranged along

the Z axis with all nodes of a key frame assigned to the same specific Z coordinate. No supporting

edges were added in this example. The implementation of this method requires some issues to be

1 2

3 4

5

Figure 5.12: Force directed key frame generation

resolved at the following steps:
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1. Add stabilizing edges to the graph.

2. Determine the number of key frames.

3. Compute initial positions for nodes in key graphs and assign optimal edge length to edges.

4. Simulate the system.

5. Interpolate key frames.

These are discussed below:

Adding stabilizing edges

The goal of adding stabilizing edges to the graph is to support structured movement of the graph

during the animation. Experience has shown us that a “robust” graph structure is essential for

creating structured motions when using the3D Spring Embeddermethod. We use the term “robust”

to refer to the intuitive notion of robustness, that is the degree of resistance to deformation by

outside forces. As the original graph structure might be arbitrarily “non-robust”, and in the worst

case might not contain any edges at all, we have to augment the graph with supporting edges. In

order to guarantee high computation speed the decision of where to add edges has to be made

quickly and only a limited number of edges can be added to the graph. We used the following two

heuristics:

1. Artificial center node

An artificial node, called thecenter node, and edges from all other nodes to this node are

added to the graph. The center node is placed centrally, for example at the barycenter or the

center of the bounding box. We choose the barycenter for our implementation. The positions

of the center nodes in each layer is on the interpolated direct line of the centers of the initial

and target drawings. Figure 5.13 shows snapshots of three dimensional views of the resulting

key frame graph. This procedure addskn edges to the graph withk the number of key frames

andn the number of nodes in the graph. The centers and their positions can be computed in

O (n). This step, therefore, does not add to the overall time complexity of the algorithm.

2. Add Delaunay Edges.

A classical data structure from computational geometry, theDelaunay triangulation, connects

points in the plane in a very compact, rigid form. The Delaunay triangulationD (S) of S is a



5.2 3D Spring Embedder Method 175

1 2

Figure 5.13: Frame graph with center node edges

planar graph drawing defined as follows: the nodes ofD (S) consist of the data points ofS,

and two nodessi, sj are joined by an edge if and only if there exists a circle passing through

si, sj having empty interior. The Delaunay triangulation is the graph dual of the well-known

Voronoi diagram ofS. Some of the interesting features of Delaunay triangulations are listed

below; more details can be found in virtually any textbook on computational geometry, for

example [26].

(a) If si is the nearest neighbor ofsj from among the data points ofS, then(si, sj) is an

edge inD (S).

(b) The number of edges inD (S) is at most3n − 6, and thus the average number of

neighbors of a sitesi in D (S) is less than 6.

(c) The Delaunay triangulation is the most well-proportioned over all triangulations ofS,

in that the size of the minimum angle over all its triangles is the maximum possible.

(d) The triangulationD (S) can be robustly computed inO (n log n) time.

Figure 5.14 shows the Delaunay triangulation of the nodes of the graph from figure 5.12.1.

The Delaunay triangulation addsO (kn) edges to the graph withk being the number of key

frames andn being the number of nodes in the graph. The Delaunay triangulation has to

be computed only once, takingO (n log n) time. This increases the preprocessing time to

O (n log n) and leaves the frame generation time atO (n). Figure 5.15 shows two snapshots

of the three dimensional key frame graph with Delaunay edges. The Delaunay edges increase

the “robustness” of the graph structure significantly. There is a path from the interior of each

Delaunay triangle to the interior of each other Delaunay triangle through adjacent Delaunay
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Figure 5.14: Example of the Delaunay Triangulation of the graph from figure 5.12.1.

1 2

Figure 5.15: Frame graph with Delaunay edges

triangles. The Delaunay framework is thus rigid. This means that we cannot deform the

graph in any way which changes angles or distances between nodes without increasing the

length of a Delaunay edge4. It is well known from civil engineering that the “robustness” of a

triangle is in direct relation to the minimum angle of the triangle. The Delaunay triangulation

guarantees that the size of the minimum angle over all its triangles is the maximum possible.

This means that in this sense it maximizes the “robustness” of the framework.

Determine number of key frames

Every key frame adds a linear number of nodes and edges to the key frame graph. Any small con-

stant number of key frames is, therefore, acceptable. We use 10 key frames in our implementation.

4For a detailed discussion on the concept of “rigidity” see, for example, [23]
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Compute initial positions for key graphs and edge lengths

The choice of good initial positions of the nodes of the key frame graph is essential for a fast

convergence of the edge force simulation. Several approaches are possible. For example, the nodes

of the key frame graphs could be placed on the direct line between the positions of the corresponding

nodes in the initial and the target drawing. In our implementation of this method we apply a slightly

more sophisticated approach, however. We compute a transformation for the whole graph using the

linear regression method from chapter 6 and place the nodes according to this transformation. For

the scenario in figure 5.12 the linear regression method would find a rotation by90o and a scaling

by a factor of0.5. Figure 5.16 shows the initial placement of the nodes according to this scenario.

Each edge in the key frame graph has to be assigned an optimal length and a weight. Many different

1 2

Figure 5.16: Frame graph with node positions set according to linear regression analysis.

approaches are possible. We use the fact that we have four different kinds of edges in our graph:

the original graph edges, the Delaunay edges, the center node edges, and the edges between the

key frames. For the original graph edges, the Delaunay edges, and the center node edges we use

the linearly interpolated edge length between the length in the initial and in the target drawing as

optimal edge length in each key graph. These forces encourage the nodes to move in a structured

way, preserving relative distances. We use the distance between the key frame graphs on thez

axis as the optimal length for the inter key frame graph edges. These forces try to keep the path

of node movements as short as possible. We assign an individual weight to each class of edge and

assign the same weight to each edge within the class. A good choice of weights is not easy and we

found different weight distributions to be optimal in different scenarios. Developing heuristics to

automatically determine good weights for a given scenario is as yet an unsolved problem. We use
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the weights shown in the following table for our experiments.

Edge type Weight

Graph edges 1.0

Delaunay edges 1.0

Center node edges 1.0

Inter key frame edges 0.7

Simulation of the forces

We simulate the system by iteratively updating the node positions according to the edge forces. The

simulation stops if the system enters a stable configuration or a maximum number of iterations has

been performed. Given a key frame graphG = (V,EG ∪ ED ∪ EC ∪ EI) with a setEG of original

graph edges, a setED of Delaunay edges, a setEC of center node edges, and a setEI of edges

between key frame graph layers, as well as a distance functiond : (V, V ) → IR, a length function

l : E → IR assigning an optimal length to each edge, and a weight functionw : IP(E) → IR

assigning a weight to each class of edges, the following force applies to each nodev ∈ V :

Force (v) =

∑
k∈{G,D,C,I} w (Ek)

∑
e=(u,v)∈Ek

u−v
d(u,v) (d (u, v)− l (e))∑

k∈{G,D,C,I} w (Ek) |Ek|

Interpolate key frames

During the animation the nodes have to be moved along a path interpolating the key frame positions.

Standard point interpolation techniques can be used. For our scenarios we move the nodes along

the direct line between key frame positions. As an alternative NURBS could be used to provide a

smooth interpolation of the node paths, as it is not essential that all key positions are exactly met

and NURBS are invariant to simple transformations preserving structured movements of nodes.

5.2.2 Analysis

Straightforward modifications of various existing spring embedder algorithms [7] can be used to

perform the simulation of the physical force system. Each of these algorithms has slightly different

properties and the analysis of our measures thus theoretically depends on which method is used.

To allow for a more general discussion we only make a few assumptions on the chosen method.

We assume that the chosen method converges to a local minimum, that is to a configuration where
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the kinetic energy of the nodes and the sum of the forces for each node are zero. Convergence

can usually easily be guaranteed by applying the appropriate physical laws and using a dampening

factor. We further assume that the method is able to compute the edge forces in a time linear to the

number of edges in the graph.

1. Init

Given a graphG = (U, V ) andnv = |V |, n = |V |+ |E|, k key frames, and an upper bound

i on the number of iteration of the simulation, the following steps have to be performed:

• Determine the center of the graph (O (nv)), add center nodesO (1), add edges from all

nodes to the center nodeO (nv).

• Compute the Delaunay triangulation (O (nv log nv)) and add Delaunay edges to the

graph (O (nv)). This take a total time ofO (nv log nv).

• Copy the graph for each key frame (O (kn)), add edges between key frames (O (kn)).

• None of the previous steps adds more thanO (nv) edges to the graph. During each

iteration of the simulation we have to update all node positions according to the edge

forces. As each edge is connected to exactly two nodes this can be done inO (n) time.

The number of iterations of the simulation is bounded by a constanti, after which we

terminate the simulation if no stable configuration has been reached. The complete

simulation, therefore, takesO (ikn) time.

This amounts to a totalInit time ofO (nv log nv) + O (kn). With k andi constant this gives

anInit time ofO (n log n) which is an acceptable time complexity

2. T/F

The position of every node can be updated in constant time, resulting in a time complexity of

O (n) to compute a frame.

3. UNI

The3D Spring Embeddermethod does not consider inter-node distances explicitly. It does

however provide some mechanisms which tend to reduceunnecessary node intersections.

The graph-edge forces help to avoid intersections of nodes which are connected by an edge.

The artificial Delaunay edges tend to reduceunnecessary node intersectionsof nodes which
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lie close to each other in the initial drawing. As a consequence, the3D Spring Embed-

der method generally achieves good values forunnecessary node intersectionsin scenarios

which involve dense graphs, as well as in scenarios which preserve the topology of the layout

between the initial drawing and the target drawing. For scenarios involving sparse graphs,

however, once the topology is broken the stabilizing mechanisms cease to work and are thus

no longer able to effectively avoid node intersections.

4. CEL

The graph-edge forces encode this measure explicitly in the simulation. Further, all other

edges in the physical system are also directly related to one or more measures. The computed

animation corresponds to a local energy minimum of the simulated force system. We there-

fore know that there can be no other animation in the immediate vicinity of the computed

animation which has better values forconstant edge lengthand at least as good values for all

other measures. By adjusting the weight of the graph edge forces more or less emphasis can

be put on achieving good values forconstant edge length.

5. Smoothness

As the direction of node paths can change abruptly at each key frame position, the animation

is generally not smooth. The inter plane edges encourage smooth transitions to some degree,

but do not guarantee them. Spline path interpolation can be used to guarantee smooth transi-

tions over the key frames. Care has to be taken, however, not to increase the value of other

measures by doing so, as many spline interpolation techniques are not invariant to simple

transformations such as rotations.

6. UNM

The Delaunay edges and the original graph edges support structured movements. For most

graphs in real applications the number of original edges is linear to the number of nodes

in the graph. The Delaunay triangulation only adds a linear number of edges to the graph.

In a typical scenario, thus, only the square root of the number of node pairs contributing to

theuniform node movementmeasure are represented by forces in the simulated system; the

majority of the node pairs are not represented at all. One might expect this to lead to poor

values foruniform node movement. However, the support framework which is built by the

Delaunay edges is exceptionably robust to deformations, as explained above. We will see
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in the empirical evaluation (Section 5.2.3) that, in fact, the Delaunay framework is able to

supply sufficient stability to the graph structure to guarantee very good values foruniform

node movementin all scenarios.

7. NPL

The paths of the nodes are described by the inter-plane edges. Similar toconstant edge

length, as the computed animation corresponds to a local energy minimum of the simulated

force system, we know that there is no animation in the vicinity of the computed animation

which has better values fornode path lengthand at least as good values for all other measures.

By adjusting the weight of the inter-plane edge forces, more or less emphasis can be put on

achieving good values fornode path length.
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5.2.3 Empirical Evaluation

Scenario 1

Figure 5.17 shows the result of applying the3D Spring Embeddermethod to scenario 1. The

1 2 3

4 5 6

7 8 9

Figure 5.17: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 1.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 71 2.484E+08 402,170 621 502,950 37 32,350 1.6

Linear 130 5.020E+09 1,843,276 2,095 347,983 129 0 0.5

Best 40 2.484E+08 402,170 490 347,983 26 0 0

Median 87 2.656E+09 2,577,963 1,346 431,802 94 0 1.6
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3D Spring Embedder, Scenario 1
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As expected, the time to initialize the animation is much higher than for any other method. Also,

node path lengthis slightly higher than for the other methods. On all other measures however, the

3D Spring Embeddermethod achieves very good values.
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Scenario 1b

Figure 5.18 shows the result of applying the3D Spring Embeddermethod to scenario 1b. The
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Figure 5.18: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 1b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 71 2.697E+08 395,880 680 502,447 19 37,080 0.6

Linear 130 5.020E+09 1,843,276 2,138 347,983 129 0 0.0

Best 64 2.697E+08 395,880 533 347,983 19 0 0

Median 100 3.371E+09 2,146,880 1,409 465,534 108 0 5.1
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3D Spring Embedder, Scenario 1b
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The3D Spring Embeddermethod is theoretically symmetrical for exchanged initial and target draw-

ings. The small deviations of the obtained measures compared to the results for scenario 1 can be

explained by the inherent non-determinism of most force directed algorithms, as well as by numer-

ical inaccuracies.
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Scenario 2

Figure 5.19 shows the result of applying the3D Spring Embeddermethod to scenario 2. The
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Figure 5.19: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 2.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 4 9.863E+06 125 374 950,648 0 32,690 1.1

Linear 12,891 1.675E+10 212,992 1,301,941 440,110 3,813,032 50 1.6

Best 4 1.066E-20 0 374 440,110 0 0 1

Median 92 4.259E+08 13,608 3,468 662,794 24,579 270 4.7
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3D Spring Embedder, Scenario 2
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5

Apart from Init time andnode path length, the3D Spring Embeddermethod achieves results which

are several orders of magnitude better than theLinear Interpolationmethod. The results are close to

the optimum in most cases. However, foruniform node movementthe result is significantly worse

than the best result. Although the snapshots of the animation (Figure 5.19 are almost identical to the

snapshots of the optimal method (Figure 6.8, page 217), a look at the actual animation reveals the

reason for the bad value. The node paths are determined by piecewise direct linear interpolations

between the virtual key frames. This means, that although the3D Spring Embeddercan generate

the correct virtual key frames for the180o rotation, the paths between the virtual key frames are

line segments and not arcs. This results in the relatively bad values foruniform node movementand

induces the impression of a repeatedly expanding and shrinking graph during the animation.

5Note that the bar chart is misleading foruniform node movementin this case. In the chart it looks as if the value for
uniform node movementis close to the optimum. This is actually not true.
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Scenario 2b

Figure 5.20 shows the result of applying the3D Spring Embeddermethod to scenario 2b. The
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Figure 5.20: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 2b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 114 9.687E+06 750 623 949,956 749 122,650 2.8

Linear 9,681 1.670E+10 202,046 582,018 439,723 3,577,834 0 1.0

Best 105 6.805E+03 750 612 439,723 749 0 1

Median 347 4.339E+08 24,396 6,301 662,911 33,607 30 4.3
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3D Spring Embedder, Scenario 2b
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The same remarks as for scenario 2 apply to scenario 2b.
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Scenario 3

Figure 5.21 shows the result of applying the3D Spring Embeddermethod to scenario 3. The
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Figure 5.21: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 3.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 2 2.753E+07 4,887 45 170,902 154 62,450 0.0

Linear 40 3.962E+08 114,892 4,055 94,772 23,519 0 0.6

Best 0 2.753E+07 720 0 94,772 0 0 0

Median 2 1.799E+08 35,772 51 128,102 245 0 1.1
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3D Spring Embedder, Scenario 3
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The results for scenario 3 are consistent with the remarks for the previous scenarios.



5.2 3D Spring Embedder Method 192

Scenario 4

Figure 5.22 shows the result of applying the3D Spring Embeddermethod to scenario 4. The
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Figure 5.22: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 4.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 195 9.562E+07 954,237 1,362 182,710 61 26,420 0.5

Linear 190 2.877E+08 1,326,461 1,328 120,561 169 0 0.0

Best 164 9.562E+07 954,237 985 120,561 56 0 0

Median 196 2.991E+08 2,125,756 1,244 136,133 124 0 0.5
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3D Spring Embedder, Scenario 4
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The results for scenario 4 are consistent with the remarks for the previous scenarios.
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Scenario 5

Figure 5.23 shows the result of applying the3D Spring Embeddermethod to scenario 5. The
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Figure 5.23: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 5.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 590 3.088E+09 4,591,048 16,692 987,276 163 21,470 0.5

Linear 420 1.470E+10 2,399,401 15,725 597,271 277 0 0.0

Best 308 3.088E+09 2,399,401 8,438 597,271 48 0 0

Median 505 1.198E+10 3,262,048 15,373 731,150 272 55 1.1
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3D Spring Embedder, Scenario 5
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Scenario 5 is the first scenario where the3D Spring Embeddermethod shows results which are

significantly worse than the results of the best method. Bad results occur instatic edge crossings,

temporary edge crossings, andunnecessary node intersections. We further notice that the actual

animation is aesthetically not very pleasing. The emphasis in the3D Spring Embeddermethod

to try to optimizeuniform node movementandconstant edge lengthprevents it from finding an

aesthetically more pleasing animation with worse values foruniform node movementandconstant

edge lengthbut better values forstatic edge crossings, temporary edge crossings, andunnecessary

node intersections.
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Scenario 6

Figure 5.24 shows the result of applying the3D Spring Embeddermethod to scenario 6. The
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Figure 5.24: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 6.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 6,765 1.147E+08 1,020,039 13,348 170,545 136 12,640 0.0

Linear 7,095 2.385E+08 4,174,533 15,762 73,957 185 0 0.5

Best 4,853 1.147E+08 1,020,039 8,301 73,957 44 0 0

Median 6,777 2.077E+08 6,856,478 15,610 91,672 165 25 0.2
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3D Spring Embedder, Scenario 6
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The results for scenario 6 are consistent with the remarks for the previous scenarios.
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Scenario 7

Figure 5.25 shows the result of applying the3D Spring Embeddermethod to scenario 7. The
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Figure 5.25: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 7.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 510 1.930E+07 71,857 4,345 65,639 146 10,550 2.3

Linear 1,011 4.858E+07 90,948 4,975 25,170 2,692 0 0.0

Best 454 1.841E+07 71,857 2,905 25,170 77 0 0

Median 696 4.262E+07 816,052 4,631 45,283 198 25 1.1
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3D Spring Embedder, Scenario 7
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The 3D Spring Embeddermethod is not able to find a good animation strategy in scenario 7. As

per definition, the3D Spring Embeddermethod optimizesuniform node movementandconstant

edge length. However, the resulting animation has bad values forstatic edge length, temporary

edge length, andunnecessary node intersections, and a particular bad value fornode path length.

The animation itself looks very inconsistent with many abrupt and large changes of direction at the

virtual key frames.
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Scenario 8

Figure 5.26 shows the result of applying the3D Spring Embeddermethod to scenario 8. The
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Figure 5.26: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
the3D Spring Embeddermethod to scenario 8.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Spring 3D 35,265 1.718E+08 14,816 1,977,113 1,100,867 1,256,611 87,500 5.0

Linear 46,185 2.829E+09 4,138 2,112,739 290,510 7,427,591 50 7.2

Best 28,706 1.718E+08 4,138 289,169 290,510 1,256,611 0 4

Median 38,574 9.407E+08 18,486 1,971,003 357,359 2,192,830 80 13.7
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3D Spring Embedder, Scenario 8
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The results for scenario 8 are consistent with the remarks for the previous scenarios.

5.2.4 Summary

The3D Spring Embeddermethod produces good animations for most scenarios. Like theForce Di-

rectedmethod, it does not quite reach the same quality as specialized methods for certain specially

structured scenarios, but still tends to produce good animations in these cases. The quality of the

animations generated by the3D Spring Embeddermethod generally tends to be slightly less than

for the Force Directedmethod. The3D Spring Embeddermethod is also more likely to produce

perceptually worse animations than theForce Directedmethod, as for example in scenario 7 on

page 198. In this scenario the3D Spring Embeddermethod is not able to find a good local optimum

for the animation framework. The resulting animation is quite inconsistent and unstructured.

The 3D Spring Embeddermethods has several advantages over theForce Directedmethod,

however. As the whole animation is computed before the first frame is displayed, the3D Spring

Embeddermethods can render each frame in linear time, provide random access to any frame,

reverse the direction of the animation and allows efficient control over the speed of the animation.

The biggest drawback of the3D Spring Embeddermethod is its high initialization cost. Although
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linear in complexity, a high constant factor almost always results in a noticeable gap before the

animation starts on currently available computer systems. This gap can extend to several minutes for

large graphs in certain scenarios. On current computer systems, the use of the3D Spring Embedder

method is therefore limited to medium sized scenarios, non-interactive systems, or applications

where the computational cost for computing the changes to the graph drawing outweigh the cost of

initializing the animation.



C H A P T E R 6

Linear Regression Analysis

Correlation analysis is a well known statistical method to determine dependencies between com-

ponents of data samples [15, pp 800]. In the case of linear correlation, we assume our data setD

has two componentsX andY which have a linear dependency. This means, we assume that we

can express one component as a linear combination of the other component plus some small error

ε: ∃a, b ∈ IR : ∀d ∈ D : dy = a + bdx + εx. Given such a dependency, linear regression allows us

to determinea andb by minimizing the expression:

n∑
i=1

(yi − (a + bxi))
2

Figure 6.1 shows an example for the caseX, Y ⊆ IR. The dots represent the data samples. The

diagonal line represents the affine linear function which minimizes the squared Euclidean distance

to the data points. Not all data samples can be described by an affine linear transformation. It

Figure 6.1: Example for one dimensional linear regression.

is therefore desirable to be able to determine how well the result of a linear regression analysis
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describes the actual data. A good and efficiently computable indicator for the “goodness-of-fit” of

the computed affine linear transformation is the square of the correlation coefficient, thecoefficient

of determination. The coefficient of determination is usually denoted byr2 and it can assume values

between zero and one. A value of one indicates a perfect fit of the affine linear transformation. A

value of zero indicates no linear dependency between the data samples. The value ofr2 can be

interpreted as the percentage by which the prediction error is reduced when using the computed

affine linear transformation compared to using the null assumption, that is the mean over all data

samples. For a more detailed discussion on the coefficient of determination compare also [15, pp

800] and [81, pp 590].

In section 2.4 we discussed how the human brain is genetically predisposed for perceiving

certain kinds of “natural” motions. Among these motions are the movements of three dimensional

rigid objects in space. This fact is hardly surprising, as a fast and efficient perception of those

movements is essential for us to successfully interact with our environment in every day life. Even

when we project the movement of a three dimensional rigid object onto a plane we can still perceive

it with the same efficiency. For example it is not more difficult for us to follow actions on a TV

screen or with only one eye than when we have full stereo vision. If we project the motion of a three

dimensional rigid object onto a plane, then the projected motion can be described as a combination

of two dimensional scaling, rotating, translating, flipping and shear operations. For example an

object moving away from us can be described by scaling the projection. Rotations can be described

by rotation in the plane or scaling along one axis. The combinations of scaling, rotating, translating,

flip, and shear form the set of two dimensionalaffine linear transformations. Given the initial and

target positions of the nodes of a graph we can use linear regression to determine the best affine

linear transformation to describe this motion. We can then break this transformation down into the

basic operations and interpolate them.
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6.1 Linear Regression Analysis Method

6.1.1 Linear Regression Analysis of Node Positions

Given a graphG and the coordinates(xv, yv) for each nodev ∈ G, an affine linear transformation

of the node coordinates has the general form:

f (v) =

a11 a12

a21 a22

xv

yv

+

a13

a23


In order to determine the linear function which transforms the graph as close as possible to the

target frame, we have to determine theaij which minimize the distance between the positions in the

target frame and the positions after the linear transformation. We use the average error between the

individual node distances as a good approach in respect to the goal of preserving the mental map;

that is we minimize the sum of the squared Euclidean distances. Given(x′v, y
′
v) as the coordinates

of a nodev in the target drawing, we aim to minimize

∑
v∈G

|f (v)−
(
x′v, y

′
v

)
|

with || being the squared Euclidean norm, that is

∑
v∈G

(
a11xv + a12yv + a13 − x′v

)2 +
(
a21xv + a22yv + a23 − y′v

)2
(6.1)

Since expression (6.1) is always non-negative, minimizing this quadratic function can be done by

deriving it with respect to theaij and setting the resulting expressions to equal 0. We solve the

system of equations for theaij . Assuming at least 3 non co-linear pairs of node coordinates, this

gives us a unique solution for eachaij :

Let

denom =

(∑
v∈G

x2
v

)n
∑
v∈G

y2
v −

(∑
v∈G

yv

)2
− n

(∑
v∈G

xvyv

)2

+

(∑
v∈G

xv

)
· · ·

· · ·

(
2

(∑
v∈G

yv

)∑
v∈G

xvyv −

(∑
v∈G

xv

)∑
v∈G

y2
v

)
.
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Then
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. (6.2)

We can obtaina21, a22, anda23 from the solutions fora11, a12, anda13 respectively by replacing

x′v with y′v.

Interpolating an affine linear transformation

We have so far computed the best affine linear transformation between the initial and target drawing

of the graph. As the identity function describes the node positions in the initial drawing, an anima-

tion can be generated by interpolating between the identity matrix and the matrix resulting from the

linear regression analysis. The easiest approach would be to do a linear interpolation of each matrix

entry from the identity matrix to the computed matrix. However, the result would not produce the

desired effect of being perceived as the movement of a rigid object in all cases. This can easily be

seen in the case of a180o rotation of the graph. The computed transformation matrix in this case

would be

tm =

−1 0

0 −1


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interpolating the entries from the identity matrix

1 0

0 1


describing the initial drawing of the graph totm produces the matrix

0 0

0 0


at some stage collapsing the graph to one point. This does not happen in a 180 degree rotation.

Shoemake and Duff [102] show that the rotation component of the transformation is the only

part not compatible with linear entry interpolation and propose polar matrix decomposition as an

efficient way to separate a maximal rotational part from the transformation. For a2 × 2 matrix1,

M , the polar decomposition,M = RS, into a rotational matrix,R, and a non-rotational matrix,S,

takes constant time: GivenM =

a b

c d

 andσM = sign (det (M)) then

R = M + σM

 d −c

−b a


and

S =

σM (ad− bc) + a2 + c2 ab + cd

ab + cd σM (ad− bc) + b2 + d2


We can now generate an animation by interpolating the rotation over the angle, and at the same time

do a linear interpolation of the matrix entries of the non-rotational part.

Adjusting the center of rotation

The approach described above still has a small problem. The rotation that we compute is always

performed around the point of origin. The resulting motion path is thus an arc which size depends

on how far the graph lies from the origin. To avoid this behavior we modify our linear transforma-

tion before the decomposition to move the center of the graph to the origin at the beginning and

back to the original position afterwards. This can easily be done by multiplying the corresponding

1For this purpose we can ignore the translation part
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transformation matrices to each side of our matrix. The graph now rotates around its center. Several

definitions of center are possible, for example the center of the bounding box, or the barycenter. In

our experience the decision of which definition to use had little influence on the overall animation.

6.1.2 The Method

We can now define an animation method based on linear regression analysis. The following steps

have to be performed:

1. Compute the center of the of the initial and target drawing of the graph.

2. Compute an affine linear transformation from the initial layout to the target layout and an

affine linear transformation from the target layout to the initial layout. Note that the second

transformation is generally not identical to the inverse of the first transformation. Figure 6.2

illustrates this fact. Drawing 6.2.1 can be transformed into a drawing which is very close to

1 2

Figure 6.2: Example for a scenario in which the computed best affine linear transformation from the initial
to the target drawing is not the inverse of the best affine linear transformation from the target drawing to the
initial drawing.

drawing 6.2.2 by scaling the graph along they-axis. However, an affine linear transformation

which transforms drawing 6.2.2 into a drawing which is close to drawing 6.2.1 does not exist.

3. Decompose both transformations using polar decomposition.

4. For each frame compose two transformations by interpolating the two rotation angles and

the non-rotational matrices. The two transformations are then combined with a weight which

corresponds to the progress of the animation. Given a graphG = (V,E) and two affine linear

transformationsA1 = (α1, S1, T1) andA2 = (α2, S2, T2) from the initial to the target layout
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and vice versa, withαi being the rotational angles,Si being a non rotational matrices, andTi

being the translation components of the transformations, the position of each nodev ∈ V at

time t is given by:

Pv (t) = (1− t) tT1R (tα1) (I + t (S1 − I))Pv (0) + · · ·

· · · t (1− t) T2R ((1− t) α2) (I + (1− t) (S2 − I))Pv (1)

with R being a function transforming an angle into its corresponding rotational matrix andI

being the identity matrix.

Variation: Adding visual clues The computed transformation can not only be used to compute

the movements of the nodes. We can also use it to transform parts of the environment of the

animation, for example the canvas. Transforming the canvas increases the impression of a moving

rigid object. The example in figure 6.3 shows snapshots from an animation with added canvas

transformation effects. Other visual effects are possible as well.

Figure 6.3: Adding visual effects can increase the impression of the graph moving as a rigid object in space.
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6.1.3 Analysis

1. Init

Given a graphG = (U, V ) andn|V | the following steps have to be performed:

• Determine center of the initial and target layout. This costsO (n) time.

• Compute transformations from the initial to the target layout and vice versa using linear

regression. The matrix indicesaij in equation (6.2) can be computed in one iteration

over all nodes and therefore costO (n).

• Extract the rotation angle using polar decomposition. This costsO (1) time.

This amounts to a totalInit time ofO (n).

2. T/F

The position of every node can be updated in constant time, resulting in a time complexity of

O (n) to compute a frame.

3. SEC, TEC, UNI

As long as an animation is topology preserving, it achieves the optimal value zero forstatic

edge crossings, temporary edge crossings, andunnecessary node intersections. TheLinear

Regression Analysismethod computes an animation which is based on the combination of

two affine linear transformations. Each of the two affine linear transformations is topology

preserving in itself; with the exception of a possible flip. However, one transformation is

applied to the initial positions of the nodes, and the other transformation is applied to the

target positions of the nodes. As a consequence, the averaging combination of the two po-

sitions for each node is not necessarily topology preserving. The ability to break the graph

topology is even necessary, as otherwise theLinear Regression Analysismethod would not

be able to create animations between arbitrary non-topology preserving drawings of graphs.

For scenarios where the target drawing can be described sufficiently well by an affine linear

transformation of the initial drawing, theLinear Regression Analysismethod thus achieves

close to optimal values forstatic edge crossings, temporary edge crossings, andunnecessary

node intersections. If no such affine linear dependency exists, however, arbitrarily bad values

for these measures can occur. Figure 6.4 shows an example. The right subgraph in the initial

drawing 6.4.1 moves to the left, while the left subgraph remains at its original position. The
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1 2

Figure 6.4: Example for a scenario where theLinear Regression Analysismethod achieves bad values for
most measures.

Linear Regression Analysismethod finds the following affine linear transformation for this

scenario:

Transformation Amount

Scale alongx-Axis 0.631

Scale alongy-Axis 1.203

Rotation −167o

Skew −42o

Translation (227.78, 20)

Flip True

The r2 value of the computed transformation is only 35.44 %, indicating a low probability

for an affine linear dependency between the initial drawing and the target drawing. Also,

intuitively, the decomposed transformation seems quite counter-intuitive. We would expect

the right subgraph to move uniformly, maybe on an arc, to the left. Aflip and the high value

for skewin the transformation are not necessary for such a movement. The corresponding

animation, which is shown in figure 6.5, confirms our apprehensions. The animation achieves

unnecessarily bad results for almost all measures.

4. CEL, UNM

As for static edge crossings, temporary edge crossings, andunnecessary node intersections

the values forconstant edge lengthanduniform node movementdepend strongly on the degree

of affine linear dependency between the initial and the target drawing. However, in this case

the dependency is not quite as straightforward. The determining factor forconstant edge

lengthanduniform node movementis whether the computedskewfactor is valid or not. For
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1 2 3

4 5 6

7 8 9

Figure 6.5: This figure shows 9 snapshots of a 101 frame animation of the scenario displayed in figure 6.4.
The animation is the result of applying theLinear Regression Analysismethod. This particular scenario
cannot be described well by an affine linear transformation, and the animation achieves bad values for most
measures.

transformations which contain a naturalskewcomponent, animating a theskewdoes not

affect constant edge lengthor uniform node movement. However, if theLinear Regression

Analysismethod wrongly identifies a non-existentskewcomponent, as for example in figure

6.5,constant edge lengthanduniform node movementcan become arbitrarily bad.

5. Smoothness

The path of each node is given by a combination of linear transformations, and is therefore

smooth. In multiple key frame scenarios, a non-smooth direction change is expected at every

key frame.
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6.1.4 Empirical Evaluation

Scenario 1

Figure 6.6 shows the result of applying theLinear Regression Analysismethod to scenario 1. The

1 2 3

4 5 6

7 8 9

Figure 6.6: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 1.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 65 1.722E+09 1,203,360 490 404,066 111 0 1.6

Linear 130 5.020E+09 1,843,276 2,095 347,983 129 0 0.5

Best 40 2.484E+08 402,170 490 347,983 26 0 0

Median 87 2.656E+09 2,577,963 1,346 431,802 94 0 1.6
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Linear Regression Method, Scenario 1
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The measured goodness-of-fit value in scenario 1 isr2 = 46% for the linear transformation from

the initial to the target drawing, andr2 = 59% for the reverse transformation.

The Linear Regressionmethod achieves better values than theDirect Linear Interpolation

method regarding all measures butnode path length. TheLinear Regressionmethod also achieves

better results than the median in all measures butunnecessary node intersections. The animation

itself appears aesthetically pleasing.

We notice a significant difference between ther2 values of the transformation from the initial

drawing to the target drawing and the transformation from the target drawing to the initial drawing.

As discussed before, the two transformations are not necessarily inverse to each other, and also not

necessarily are able to describe the transformation with the same goodness of fit. This can result in

significantly differentr2 values for the two transformations.
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Scenario 1b

Figure 6.7 shows the result of applying theLinear Regression Analysismethod to scenario 1b. The

1 2 3

4 5 6

7 8 9

Figure 6.7: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 1b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 65 1.722E+09 1,203,360 533 404,055 111 0 8.8

Linear 130 5.020E+09 1,843,276 2,138 347,983 129 0 0.0

Best 64 2.697E+08 395,880 533 347,983 19 0 0

Median 100 3.371E+09 2,146,880 1,409 465,534 108 0 5.1
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Linear Regression Method, Scenario 1b
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The measured goodness-of-fit value in scenario 1b isr2 = 59% for the linear transformation from

the initial to the target drawing, andr2 = 46% for the reverse transformation. TheLinear Re-

gressionmethod is theoretically symmetric for exchanged initial and target drawings. The small

deviations in the measures are due to numerical inaccuracies.
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Scenario 2

Figure 6.8 shows the result of applying theLinear Regression Analysismethod to scenario 2. The
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7 8 9

Figure 6.8: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 2.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 6 1.066E-20 0 578 691,249 0 490 7.7

Linear 12,891 1.675E+10 212,992 1,301,941 440,110 3,813,032 50 1.6

Best 4 1.066E-20 0 374 440,110 0 0 1

Median 92 4.259E+08 13,608 3,468 662,794 24,579 270 4.7
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Linear Regression Method, Scenario 2
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The measured goodness-of-fit value in scenario 2 isr2 = 100% for the linear transformation from

the initial to the target drawing, andr2 = 100% for the reverse transformation. The goodness-of-fit

value ofr2 = 100% shows us that the transformation from the initial drawing to the target draw-

ing can be perfectly described by an affine linear transformation. TheLinear Regressionmethod

consequently achieves close to optimal values for all measures butnode path length. Although the

Linear Regressionmethod is able to describe the transformation perfectly, numerical inaccuracies

cause small deviations form the theoretical optimal values.
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Scenario 2b

Figure 6.9 shows the result of applying theLinear Regression Analysismethod to scenario 2b. The
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Figure 6.9: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 2b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 105 6.805E+03 895 612 690,308 954 60 5.8

Linear 9,681 1.670E+10 202,046 582,018 439,723 3,577,834 0 1.0

Best 105 6.805E+03 750 612 439,723 749 0 1

Median 347 4.339E+08 24,396 6,301 662,911 33,607 30 4.3
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Linear Regression Method, Scenario 2b
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The measured goodness-of-fit value in scenario 2b isr2 = 99% for the linear transformation from

the initial to the target drawing, andr2 = 99% for the reverse transformation. The transformation

from the initial to the target drawing can be described by an affine linear transformation with some

additional noise in the form of small local offsets. TheLinear Regressionmethod successfully

identifies the transformation with very high values for goodness-of-fit. The resulting animation is

perceptually convincing, and the recorded measures are close to optimal in all categories butnode

path length.
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Scenario 3

Figure 6.10 shows the result of applying theLinear Regression Analysismethod to scenario 3. The

1 2 3

4 5 6

7 8 9

Figure 6.10: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 3.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 0 2.121E+08 48,123 0 113,145 19 0 1.7

Linear 40 3.962E+08 114,892 4,055 94,772 23,519 0 0.6

Best 0 2.753E+07 720 0 94,772 0 0 0

Median 2 1.799E+08 35,772 51 128,102 245 0 1.1
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Linear Regression Method, Scenario 3
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The measured goodness-of-fit value in scenario 3 isr2 = 34% for the linear transformation from

the initial to the target drawing, andr2 = 56% for the reverse transformation. The low goodness-

of-fit values indicates that the transformation between the initial drawing and the target drawing

cannot be described well by an affine linear transformation. And indeed, the animation is clearly

not optimal. The actual transformation underlying scenario 3 consists of three differently behaving

sub-graphs. TheLinear Regressionmethod, however, computes a transformation which averages

over the motions of all nodes. This leads to locally not optimal motions for most nodes. Although

the recorded values are significantly better than for theDirect Linear Interpolationmethod, they

are nevertheless significantly worse than for the best method.
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Scenario 4

Figure 6.11 shows the result of applying theLinear Regression Analysismethod to scenario 4. The
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Figure 6.11: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 4.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 164 4.306E+08 2,341,735 1,066 130,556 150 0 0.0

Linear 190 2.877E+08 1,326,461 1,328 120,561 169 0 0.0

Best 164 9.562E+07 954,237 985 120,561 56 0 0

Median 196 2.991E+08 2,125,756 1,244 136,133 124 0 0.5



6.1 Linear Regression Analysis Method 224

Linear Regression Method, Scenario 4
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The measured goodness-of-fit value in 4 scenario isr2 = 49% for the linear transformation from

the initial to the target drawing, andr2 = 41% for the reverse transformation. The remarks for the

previous scenarios are consistent with the results for scenario 4.
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Scenario 5

Figure 6.12 shows the result of applying theLinear Regression Analysismethod to scenario 5. The
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Figure 6.12: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 5.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 308 1.479E+10 2,626,936 13,095 763,763 307 110 1.7

Linear 420 1.470E+10 2,399,401 15,725 597,271 277 0 0.0

Best 308 3.088E+09 2,399,401 8,438 597,271 48 0 0

Median 505 1.198E+10 3,262,048 15,373 731,150 272 55 1.1
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Linear Regression Method, Scenario 5
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The measured goodness-of-fit value in scenario 5 isr2 = 21% for the linear transformation from the

initial to the target drawing, andr2 = 21% for the reverse transformation. The results for scenario

5 are consistent with the remarks for the previous scenarios.
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Scenario 6

Figure 6.13 shows the result of applying theLinear Regression Analysismethod to scenario 6. The
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Figure 6.13: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 6.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 6,725 4.998E+08 10,812,041 8,301 118,195 288 50 0.0

Linear 7,095 2.385E+08 4,174,533 15,762 73,957 185 0 0.5

Best 4,853 1.147E+08 1,020,039 8,301 73,957 44 0 0

Median 6,777 2.077E+08 6,856,478 15,610 91,672 165 25 0.2
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Linear Regression Method, Scenario 6
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The measured goodness-of-fit value in scenario 6 isr2 = 0.5% for the linear transformation from

the initial to the target drawing, andr2 = 0.5% for the reverse transformation. The lowr2 indicate

that there is no affine linear relationship between the two drawings in this scenario.
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Scenario 7

Figure 6.14 shows the result of applying theLinear Regression Analysismethod to scenario 7. The
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Figure 6.14: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 7.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 454 4.496E+07 678,300 3,718 59,502 198 50 0.0

Linear 1,011 4.858E+07 90,948 4,975 25,170 2,692 0 0.0

Best 454 1.841E+07 71,857 2,905 25,170 77 0 0

Median 696 4.262E+07 816,052 4,631 45,283 198 25 1.1



6.1 Linear Regression Analysis Method 230

Linear Regression Method, Scenario 7
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The measured goodness-of-fit value in scenario 7 isr2 = 29% for the linear transformation from the

initial to the target drawing, andr2 = 29% for the reverse transformation. The results for scenario

7 are consistent with the remarks for the previous scenarios.
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Scenario 8

Figure 6.15 shows the result of applying theLinear Regression Analysismethod to scenario 8. The
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Figure 6.15: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theLinear Regression Analysismethod to scenario 8.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Regression 36,894 1.007E+09 7,932 1,962,955 326,451 2,915,604 110 20.1

Linear 46,185 2.829E+09 4,138 2,112,739 290,510 7,427,591 50 7.2

Best 28,706 1.718E+08 4,138 289,169 290,510 1,256,611 0 4

Median 38,574 9.407E+08 18,486 1,971,003 357,359 2,192,830 80 13.7
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Linear Regression Method, Scenario 8
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The measured goodness-of-fit value in scenario 8 isr2 = 87% for the linear transformation from

the initial to the target drawing, andr2 = 46% for the reverse transformation. We note a partic-

ularly high difference between the goodness-of-fit values between the two computed affine linear

transformations. Many nodes in the target drawing lie on, or close to, a straight line. In this respect,

scenario 8 is quite similar to example in figure 6.4 on page 211. The large difference between the

goodness-of-fit values is therefore not surprising.

6.1.5 Summary

Minimizing the sum of the Euclidean squares is known to be statistically biased and to over-

emphasize outlying samples. On the other hand, other distance functions are much harder to min-

imize and generally require numerical methods [54, 91]. To increase statistic stability different

approaches are possible. The median or center of the drawings could be added to the node set

with a weight factor. Another promising approach would be to compute different transformations

using random subsets of the nodes and using the best one. Despite this shortcoming, theLinear

Regression Analysismethod produces good results in almost all scenarios.

TheLinear Regressionmethod is designed to identify and animate changes between drawings



6.1 Linear Regression Analysis Method 233

of graphs which can be described by an affine linear transformation. These in particular include

transformations with a significant rotational component. TheLinear Regression Analysismethod

achieves very good results in these scenarios. For general scenarios, theLinear Regression Analysis

method produces results which are at least as good as theDirect Linear Interpolationmethod for

almost all scenarios and measures. TheLinear Regression Analysismethod averages the overall

motion of all nodes of the graph. As a consequence it achieves rather poor results if sub-graphs

show different kinds of motions, as we have seen in scenario 3 (Figure 6.10 on page 221). In these

cases it can produce animations which achieve worse values than theDirect Linear Interpolation

method.

The efficiently computable goodness-of-fit valuer2 can be taken into account when deciding

whether to use theLinear Regression Analysismethod for a given scenario. Although we were not

able to identify a clear threshold, in our experiencer2 values of more than 70% generally indicate

a good result for theLinear Regression Analysismethod.
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6.2 Motion Cluster Analysis Method

Although theLinear Regression Analysismethod works well when the motion of the nodes is more

or less uniform, it performs poorly when several subgraphs have very different underlying motions,

as is generally the case when only part of a graph layout is updated. The method attempts to

compute an average over all motions of individual nodes, and as a result can decide upon a motion

that is not well suited to all parts of the graph. Figure 6.16 shows an example where computing the

best overall affine linear transformation produces a poor result.

1 2 3

4 5 6

7 8 9

Figure 6.16: Example of a bad animation, starting at Frame 1 and ending at Frame 9. Although only the
right-hand component of the graph should move, the calculation and application of an average movement
causes distortion in the left-hand component.

In this section, we use linear regression analysis as the basis of several clustering heuristics

which seek to identify subgraphs which share a similar, structured motion. Applying different trans-

formations to the subgraphs identified allows for the partial update of graph layouts. Figure 6.17

shows the result of applying the method introduced in Section 6.2.2 to the situation of Figure 6.16.
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Figure 6.17: Example of a good animation. Different motions are computed for each of the components of
the graph. The result is an animation where each subgraph moves in an individual and much more intuitive
way.

6.2.1 Determining Candidate Transformations

For each nodev there is an infinite number of affine linear transformations that can take it from

its initial position to its target position. If the transformations applied to individual nodes were

chosen arbitrarily and independently, the resulting animation would appear chaotic. In order to

effect a smooth animation, it stands to reason that nodes should be grouped together under common

transformations whenever possible.

Using this principle, we can restrict the candidate transformations forv to those thatv might

share with other nodes. In general, three nodes (associated with three non-collinear initial loca-

tions and three non-collinear target locations) are required to uniquely determine an affine linear

transformation in the two-dimensional plane. Naturally, if four or more nodes were to determine a

common affine transformation, this transformation would also be determined by at least one of its

subsets of cardinality three. This suggests that the candidate transformations forv could be limited

to those generated by triples of nodes that includev. However, the total number of transformations

generated would be cubic in the number of nodes. For the purposes of real-time animation, this
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candidate set would still be far too large to be investigated explicitly.

To avoid paying the cubic cost of generating all candidate transformations of node triples, prac-

tical heuristics are needed. In theCluster Analysisanimation method, we use clustering techniques

to identify subsets of nodes which share similar transformations.

6.2.2 k-Means

The first clustering method we use is based on the well-knownk-means hill-climbing heuris-

tic [69]. The generalk-means heuristic for point sets begins with an arbitrary partitionP =

{P1, P2, . . . , Pk} of the data set intok groups. It then attempts an iterative improvement of the

partition, as follows:

• a representative point is computed for each groupPi;

• each element of the data set is assigned to the representative that best suits it, generating a

new partitionP ′ = {P ′
1, P

′
2, . . . , P

′
k}.

The process is repeated until an iteration yields no improvement, according to some measure of

goodness of a partition.

It is easy to see that this procedure must eventually converge. The great popularity of thek-

means method is due to its simplicity and speed. Typically, the number of iterations required is

constant, leading to an observed linear-time complexity.

Our adaptation ofk-means computes an affine transformation of each group of nodes as the

representative of the group, using the linear regression techniques outlined in section 6.1.1. In the

second step of each iteration, the redistribution of nodes is accomplished by assigning each node to

the representative transformation that brings the node closest to its final destination. Improvement

can be evaluated according to such measures as the sum of these distances to final destinations, or

of squares of these distances. Iteration continues until no further improvement is made.

6.2.3 The Method

We can therefore propose the following animation method usingk-means clustering:

1. Apply k-means to determine clusters of uniformly moving nodes:

• Randomly distribute nodes overk clusters
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• For each cluster compute a transformation by applying linear regression analysis to the

nodes of the cluster

• Until convergence

– Redistribute each node to whatever cluster describes its transformation best

– Recompute the transformations for each cluster according to its new members

2. Assign to each node the transformation according to its clusters. The final offset between the

result of the transformation and the actual position of the node in the target drawing is added

to the matrix as a translation

3. Perform polar decomposition on all transformations.

4. Interpolate the path of each node according to its associated transformation.

Given a graphG = (V,E) with n = |V |, an affine linear transformationsT1 = (R1, S1) ,

T2 = (R2, S2) , . . . , Tn = (Rn, Sn) describing the motion of each node from the initial to

the target layout, each consisting of an rotational angleRi and a non rotational matrixSi, the

position of each nodev ∈ V with initial positionP0 (v) at timet is given by:

P (v, t) = p0 (v) (1− t) M (tRv) (I + tSv)

with M being a function transforming an angle into its corresponding rotational matrix and

I being the identity matrix.

k Thek-means clustering method requires that the number of clustersk is specified at the begin-

ning. In all our examples and experimentsk was set to 10, even though the number of different

transformations involved was significantly less. This choice was motivated by two observations.

First, as the short-term memory of most users is believed to be able to accommodate roughly 7

items [76], we conclude that computing more than 10 very distinct transformations in one anima-

tion would not likely lead to a better preservation of the user’s mental map. Second, sub-clusters

derived from a well-associated larger cluster will be associated with very similar transformations,

provided that each sub-cluster contains at least three linearly-independent nodes. This indicates that

the method will likely tolerate a choice ofk somewhat larger than the minimum.
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6.2.4 Analysis

1. Init

Given a graphG = (U, V ), n = |V | andk clusters, the following steps have to be performed:

• The nodes are randomly distributed overk clusters. This takesO (n) time.

• For each cluster compute a transformation by applying linear regression analysis to the

nodes of the cluster. Computing the linear regression for a cluster is linear to the number

of elements in the cluster. As each node belongs to exactly one cluster, this amounts to

a total computation time ofO (n).

• The clustering is iteratively improved using the following loop until it converges.

– Each node is redistributed to whatever cluster describes its transformation best.

This takesO (n) time.

– The transformations for each cluster have to be recomputed according to its new

members. As discussed before, this takesO (n) time.

• After the clustering, each node is assigned a transformation according to the cluster to

which it belongs. A final translation is added to compensate for the difference between

the result of the affine linear transformation and the actual target position of the node.

This takesO (n) time.

• All transformations are decomposed in a total ofO (n) time using the polar decompo-

sition method.

Assuming thatk-means converges in a constant number of iterations we haveO (n) running

time for Init.

2. T/F

The position of every node can be updated in constant time, resulting in a time complexity of

O (n) to compute a frame.

3. SEC, TEC, UNI

Within each cluster the same results as for theLinear Regressionmethod apply. That is,

if the target drawing of a cluster can be well described by an affine linear transformation

of the initial drawing of that cluster, thenstatic edge crossings, temporary edge crossings,
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andunnecessary node intersectionshave close to optimal values. However, no mechanisms

exist in theCluster Analysisanimation method which help to optimizestatic edge crossings,

temporary edge crossings, andunnecessary node intersectionsbetween clusters. Scenarios

can be constructed which result in unnecessarily bad values for these measures. Figure 6.18

shows such an example. As with the scenario in figure 6.4 on page 211, the right subgraph

1 2

Figure 6.18: Example for a scenario where theCluster Analysismethod is able to correctly identify the
different motion clusters, but nevertheless bad values for most measures.

moves to the left, while the left subgraph stays at its original position. The corresponding

animation is shown in figure 6.19. TheCluster Analysismethod is able to identify the correct

motion clusters and animates them with perfect values for most measures within each cluster.

However, as theCluster Analysismethod does not provide any mechanisms for considering

inter-cluster relationships, the cluster move through each other which results in bad values

for most measures.

4. CEL, UNM

Again, the same results as for theLinear Regressionmethod apply within each cluster. As

for static edge crossings, temporary edge crossings, andunnecessary node intersectionsthe

Cluster Analysismethod does not provide any mechanisms to support good overall values

for constant edge lengthanduniform node movement. On the contrary, theCluster Analysis

method deliberately accepts bad inter-cluster values foruniform node movementto improve

the results foruniform node movementwithin each cluster. The idea behind this strategy is

that by having highuniform node movementwithin each cluster, the human brain automat-

ically interprets a whole cluster as one moving entity. The then relative small amount of

interferences between clusters as single objects are easily understood by the brain. Thecon-

stant edge lengthmeasure is equivalent to applying theuniform node movementmeasure to a
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Figure 6.19: This figure shows 9 snapshots of a 101 frame animation of the scenario displayed in figure 6.18.
The animation is the result of applying theCluster Analysisanimation method. TheCluster Analysismethod
is able to identify the correct motion clusters and animates them with perfect values for most measures within
each cluster. However, as theCluster Analysismethod does not provide any mechanisms for considering
inter-cluster relationships, the cluster move through each other which results in bad values for most measures.

subset of the node pairs of the graph. As the clustering process does not consider the edges

of the graph, the values forconstant edge lengthdepend mainly on how similar the identified

motion clusters are to the edge connectivity clusters of the graph. If the motion clusters are

identical to the edge connectivity clusters, then most of the edges of the graph lie within the

clusters. This results in good overall values forconstant edge length. However, if there are

many edges between motion clusters, then the values forconstant edge lengthcan become

very bad. It is easy to construct scenarios where this happens.

5. Smoothness

The path of each node is given by a linear transformation and is therefore smooth. In multiple

key frame scenarios a non smooth direction change is expected at every key frame.
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6.2.5 Empirical Evaluation

Scenario 1

Figure 6.20 shows the result of applying theMotion Cluster Analysismethod to scenario 1. The
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7 8 9

Figure 6.20: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 1.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 388 4.538E+09 41,883,085 3,765 445,023 76 270 2.2

Linear 130 5.020E+09 1,843,276 2,095 347,983 129 0 0.5

Best 40 2.484E+08 402,170 490 347,983 26 0 0

Median 87 2.656E+09 2,577,963 1,346 431,802 94 0 1.6
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Although theCluster Analysismethod is able to identify several motion clusters with highr2 values,

the animation itself looks poor. The recorded measures show bad values forstatic edge crossings,

constant edge length, andtemporary edge crossings. The identified motion clusters clearly do not

correspond to the intuitive transformation of the graph. However, the results of theCluster Analysis

method vary significantly depending on the initial random distribution of clusters. In other runs the

Cluster Analysismethod was able to produce animations for scenario 1 which are comparable in

quality to theLinear Regressionmethod. Nevertheless, for scenario 1 and scenario 1b, good results

are not more likely than bad results when using theCluster Analysismethod. We thus decided to

use the results of the first runs for both scenarios in our evaluation although they do not reflect the

whole range of possible results.
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Scenario 1b

Figure 6.21 shows the result of applying theMotion Cluster Analysismethod to scenario 1b. The

1 2 3

4 5 6

7 8 9

Figure 6.21: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 1b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 335 6.340E+09 28,847,622 4,254 491,297 104 380 11.9

Linear 130 5.020E+09 1,843,276 2,138 347,983 129 0 0.0

Best 64 2.697E+08 395,880 533 347,983 19 0 0

Median 100 3.371E+09 2,146,880 1,409 465,534 108 0 5.1
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Cluster Analysis Method, Scenario 1b
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The same remarks as for scenario 1 apply to scenario 1b.



6.2 Motion Cluster Analysis Method 245

Scenario 2

Figure 6.22 shows the result of applying theMotion Cluster Analysismethod to scenario 2. The
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Figure 6.22: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 2.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 6 1.234E-20 0 560 691,294 0 2,200 19.0

Linear 12,891 1.675E+10 212,992 1,301,941 440,110 3,813,032 50 1.6

Best 4 1.066E-20 0 374 440,110 0 0 1

Median 92 4.259E+08 13,608 3,468 662,794 24,579 270 4.7
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Cluster Analysis Method, Scenario 2
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TheCluster Analysismethod computes a perceptually very pleasing animation for scenario 2. The

recorded measures are also very good. TheCluster Analysismethod identifies more than one cluster

in this scenario. However, as the transformations for all clusters are identical, the animation displays

a uniform movement of the whole graph.
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Scenario 2b

Figure 6.23 shows the result of applying theMotion Cluster Analysismethod to scenario 2b. The
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Figure 6.23: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 2b.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 176 4.184E+06 11,733 1,398 690,412 20,013 3,460 17.8

Linear 9,681 1.670E+10 202,046 582,018 439,723 3,577,834 0 1.0

Best 105 6.805E+03 750 612 439,723 749 0 1

Median 347 4.339E+08 24,396 6,301 662,911 33,607 30 4.3
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The same remarks as for scenario 2 apply to scenario 2b. However, in this scenario uniform move-

ment of the graph is not necessarily guaranteed. Due to the noise, it is for example theoretically

possible that theCluster Analysismethod identifies clusters with opposite directions of rotation.

In such a case, the graph would not move uniformly. Additional measures would be necessary to

suppress such behavior. However, devising such measures is not trivial.
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Scenario 3

Figure 6.24 shows the result of applying theMotion Cluster Analysismethod to scenario 3. The
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Figure 6.24: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 3.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 0 1.039E+08 720 0 132,007 0 110 3.4

Linear 40 3.962E+08 114,892 4,055 94,772 23,519 0 0.6

Best 0 2.753E+07 720 0 94,772 0 0 0

Median 2 1.799E+08 35,772 51 128,102 245 0 1.1
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Cluster Analysis Method, Scenario 3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SEC UNM CEL TEC NPL UNI Init T/F

Linear
Cluster
Best
Median

Scenario 3 contains three differently transformed subgraphs. All three transformations can be de-

scribed by an affine linear function. TheCluster Analysismethod is designed for exactly such

cases. It successfully identifies and animates all motion clusters and achieves optimal values for

static edge crossings, temporary edge crossings, andunnecessary node intersections.
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Scenario 4

Figure 6.25 shows the result of applying theMotion Cluster Analysismethod to scenario 4. The
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Figure 6.25: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 4.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 197 2.441E+08 1,909,777 1,160 127,250 97 220 0.6

Linear 190 2.877E+08 1,326,461 1,328 120,561 169 0 0.0

Best 164 9.562E+07 954,237 985 120,561 56 0 0

Median 196 2.991E+08 2,125,756 1,244 136,133 124 0 0.5
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TheCluster Analysismethod is not able to identify any significant motion clusters and the resulting

animation is quite similar to theDirect Linear Interpolationmethod, the median method, and the

best method.
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Scenario 5

Figure 6.26 shows the result of applying theMotion Cluster Analysismethod to scenario 5. The
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Figure 6.26: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 5.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 1,081 1.151E+10 43,154,023 8,438 673,484 266 550 2.9

Linear 420 1.470E+10 2,399,401 15,725 597,271 277 0 0.0

Best 308 3.088E+09 2,399,401 8,438 597,271 48 0 0

Median 505 1.198E+10 3,262,048 15,373 731,150 272 55 1.1
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Cluster Analysis Method, Scenario 5
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Again theCluster Analysismethod identifies several motion clusters with high confidence. How-

ever, the motion clusters are obviously not identical to the edge connectivity clusters of the graph.

Although not disastrous, the animation nevertheless looks counter intuitive. The recorded measures

reflect this by good values for some measures, but very bad values forconstant edge lengthand

static edge crossings.
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Scenario 6

Figure 6.27 shows the result of applying theMotion Cluster Analysismethod to scenario 6. The
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Figure 6.27: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 6.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 8,040 2.009E+08 9,184,635 16,768 88,536 192 330 0.5

Linear 7,095 2.385E+08 4,174,533 15,762 73,957 185 0 0.5

Best 4,853 1.147E+08 1,020,039 8,301 73,957 44 0 0

Median 6,777 2.077E+08 6,856,478 15,610 91,672 165 25 0.2
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The results for scenario 6 and the following scenarios is consistent with the remarks for the previous

scenarios.
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Scenario 7

Figure 6.28 shows the result of applying theMotion Cluster Analysismethod to scenario 7. The
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Figure 6.28: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 7.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 1,195 9.394E+07 11,209,526 4,916 50,338 197 220 2.3

Linear 1,011 4.858E+07 90,948 4,975 25,170 2,692 0 0.0

Best 454 1.841E+07 71,857 2,905 25,170 77 0 0

Median 696 4.262E+07 816,052 4,631 45,283 198 25 1.1
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The results for scenario 7 are consistent with the remarks for the previous scenarios.
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Scenario 8

Figure 6.29 shows the result of applying theMotion Cluster Analysismethod to scenario 8. The
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Figure 6.29: This figure shows 9 snapshots of a 101 frame animation. The animation is the result of applying
theMotion Cluster Analysismethod to scenario 8.

numerical results of the animation in regard to our measures are summarized in the following table:

Method SEC UNM CEL TEC NPL UNI Init T/F

Cluster 45,209 2.879E+09 453,584 289,169 341,731 3,507,042 5,660 32.7

Linear 46,185 2.829E+09 4,138 2,112,739 290,510 7,427,591 50 7.2

Best 28,706 1.718E+08 4,138 289,169 290,510 1,256,611 0 4

Median 38,574 9.407E+08 18,486 1,971,003 357,359 2,192,830 80 13.7
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The results for scenario 8 are consistent with the remarks for the previous scenarios.

6.2.6 Summary

During our work on theCluster Analysismethod we found that the method shows a high degree

of variation of results between different scenarios and even between different runs of the same

scenario. It is therefore not possible to base a discussion of theCluster Analysismethod solely

on the 10 benchmark runs which we presented in the previous section. The following summary

is thus also based on results which we gained by applying theCluster Analysismethod to a much

larger number of animation problems during our research. These scenarios and their results are not

explicitly mentioned in this thesis, however.

Usingk-means to compute the animation in many cases successfully identifies different types of

transformations, even in the presence of ‘local’ noise. Convergence is very fast, and the animations

may be viewed in real time.

However, the generalk-means method is known to be very sensitive to the choice of partition

with which it is initialized [60, page 277]. Its variants, including our method, are not well-equipped

to discover or escape from poor clusterings that are nevertheless locally optimal. The sensitivity of
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k-means variants to their initial partitions has been investigated extensively [3, 82, 118]. In general

settings, failure of thek-means heuristic is more likely when clusters are difficult to distinguish, or

when a cluster is split among many groups of the initial partition.

In the context of animations, when clusters are difficult to distinguish, their associated trans-

formations are necessarily similar. Whether two similar clusters are declared to be separate or the

same, the resulting animations will not differ greatly. However, the distribution of a single clus-

ter among many groups is a potentially much more serious problem. Such a clustering has the

effect of a subgraph transformation not being applied in the animation. Further, partitionings in

which the motion clusters do not correspond to the edge connectivity clusters of the graph often

result in counter-intuitive animations. Extending the clustering model to include edge-connectivity

information may considerably increase the quality and stability of theCluster Analysismethod.
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Conclusions

7.1 General Analysis of Animation Methods by Measure

In the previous chapters, we introduced several methods to autonomously compute animations be-

tween drawings of graphs. We discussed these methods analytically and applied them to our bench-

mark suit. The results of the benchmark tests were compared to the median and best result for

each measure. So far, we have not directly compared animation methods with each other. We do

this in the following sections. For each measure we compare how the different methods perform

relative to each other over all benchmark scenarios. In this context we present a “radar” graphic

for each measure which shows the results for all methods on the benchmark scenarios. The results

are normalized to the radius of the radar. The exact numerical values can be found in appendix A.

Graphics displaying the results for all measures and methods grouped by benchmark scenario are

included in appendix B.
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7.1.1 Node Path Length

The results for the measurenode path lengthare shown in the following graphic:
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By design, thedirect linear interpolationmethod achieves optimal values fornode path length.

Apart from scenario 1b, the3D Spring Embeddermethod performs worst in all benchmark scenar-

ios. The artificial framework which is supposed to hold the graph together while computing the

animation is obviously not strong enough to guarantee short node paths. The results are particularly

bad for scenario 8. The question arises whether the node paths during3D Spring Embedderanima-

tions are “too long” or just “longer than the others”. We do not have a formal criteria to answer this

question and thus have to rely on the subjective impression of watching the animation (Figure 5.25

on page 198). In our opinion the node paths during this animation do not seem excessively long.
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Most methods perform significantly worse than direct linear interpolation in scenario 7. On the

other hand, we can see in the graphic forunnecessary node intersectionson page 274 thatDirect

Linear Interpolationperforms significantly worse than all other methods regardingunnecessary

node intersections(UNI) in scenario 7. This indicates an essential trade off betweennode path

lengthandunnecessary node intersectionsfor this scenario. The topology of this graph changes

significantly between the initial and target drawing. This means that the nodes have to negotiate

their path to their respective target positions among many other nodes moving in different directions.

Long node paths seem a natural consequence if node collisions are to be avoided. However, an

optimal solution for this scenario is not known and we can therefore not exclude the possibility that

there is a solution which achieves good values for all measures in scenario 7. For all other scenarios

the values for all methods lie relatively close to each other.

To summarize, we observe that although thedirect linear interpolationmethod achieves best

values fornode path lengthin all scenarios, the other animation methods also seem generally to be

able to produce animations with goodnode path length.
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7.1.2 Uniform Node Movement

The results for the measureuniform node movementare shown in the following graphic:

Uniform Node Movements
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The uniform node movementmeasures how much the distance between each pair of nodes varies

from their linearly interpolated distance during the animation. TheForce Directedmethod and the

3D Spring Embeddermethod try to optimizeuniform node movementexplicitly. The graphic shows

that they achieve this goal better than any other method over all scenarios.

TheLinear Regression Analysismethod performs significantly better thanDirect Linear Inter-

polation in all scenarios but scenario 6. Scenario 6 involves two different kind of motions. The

green nodes move towards the center of the drawing while the blue and the yellow nodes remain on

the periphery of the initial circle. As theLinear Regression Analysismethod computes the “aver-
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age” movement of all nodes, averaging the two different kinds of motion significantly decreases the

quality of the computed motion. Although theCluster Analysismethod is able to cope with the dif-

ferent motions in scenario 6, it exhibits a significantly bad behavior in scenario 7. And indeed, the

actual animation (Figure 6.28 on page 257) does not appear particularly convincing. The identified

motion clusters look valid but do not follow aesthetically pleasing motion paths.

We further notice that theOrthogonal Interpolationmethod performs significantly worse than

all other methods in scenario 4. It is not quite clear why this is the case. The main merit of the

Orthogonal Interpolationmethod lies in the aesthetically pleasing three dimensional illusion which

it generates. This illusion cannot be captured by our measures. Consequently, we cannot expect to

be able to fully explain its behavior with our measures. We continue to include the results for the

Orthogonal Interpolationmethod in our graphics, but, for the reasons given above, do not discuss

them in the future.
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7.1.3 Static Edge Crossings

The results for the measurestatic edge crossingsare shown in the following graphic:

Static Edge Crossings
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The Linear Regressionmethod performs better thanDirect Linear Interpolationin all scenarios.

TheForce Directedmethod and the3D Spring Embeddermethod perform better or almost as well

asDirect Linear Interpolationin all scenarios.

The Cluster Analysismethod achieves good values for the structured scenarios 2, 2b, and 3,

as well as for scenario 4. However, the values for scenarios 1, 1b, and 5 are very bad. We have

noted before that the corresponding animations for scenarios 1 and 1b give a rather poor aesthetic

impression. Examining the actual animation reveals that, again, theCluster Analysismethod has

identified motion clusters which do not correspond to edge-connectivity based clusters. Again, the
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motions appear valid motions, but counter our intuition.
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7.1.4 Temporary Edge Crossings

The results for the measuretemporary edge crossingsare shown in the following graphic:

Temporary Edge Crossings
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TheLinear Regressionmethod and theForce Directedmethod are more successful in avoiding

temporary edge crossings thanDirect Linear Interpolationin all scenarios.

The3D Spring Embeddermethod performs better or almost as well asDirect Linear Interpola-

tion in all scenarios.

TheCluster Analysismethod achieves bad values in scenarios 1 and 1b, but good values oth-

erwise. We note exceptionally good values for scenario 8. The animation itself, however, does not

seem to reflect this good value in any obvious way. Subjectively it does not look significantly better

than the result, for example, for theLinear Regressionmethod.
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All methods perform better than theLinear Interpolationmethod in most cases regardingtem-

porary edge crossings. This is a strong indication that they are generally able to produce a topologi-

cally more stable animation than theLinear Interpolationmethod. We consider this fact significant

with respect to the goal of helping the user maintain the mental map of the graph during the anima-

tion.
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7.1.5 Constant Edge Length

The results for the measureconstant edge lengthare shown in the following graphic:

Constant Edge Length
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TheCluster Analysismethod performs well in the structured scenarios 2, 2b, and 3, as well as

in scenario 4. The values forconstant edge lengthare very bad in all other scenarios. TheCluster

Analysismethod tries to identify motion clusters. These clusters are not necessarily identical to

clusters based on edge connectivity. As a result nodes which are connected by edges can be assigned

to different motion clusters. These inter-cluster edges can become excessively distorted during the

animation. Where motion clusters are similar to edge connectivity based clusters (Scenarios 2, 2b,

3), theCluster Analysismethod achieves good values forconstant edge length.

The very bad results for theCluster Analysismethod skew the graphic for the scenarios 1, 1b,
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5, 7, and 8. We therefore also give the following graphic of theconstant edge lengthmeasure which

does not contain the results for theCluster Analysismethod:
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Ignoring the results for theCluster Analysismethod we notice that theDirect Linear Interpo-

lation method generally achieves relatively good results in all non-structured scenarios. The3D

Spring Embeddermethod is still able to outperformDirect Linear Interpolationin all scenarios but

scenario 5 and 8. However, in both scenarios the3D Spring Embeddermethod achieves signifi-

cantly better results foruniform node movementandunnecessary node intersections.

The Force Directedmethod achieves comparatively poor values forconstant edge lengthin

some scenarios. This seems counter-intuitive at first, as theForce Directedmethod tries to optimize

uniform node movement, andconstant edge lengthis equivalent touniform node movementwhen
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only applied to a subset of all node pairs. TheForce Directedmethod, therefore, indirectly also

tries to optimizeconstant edge length. For most graphs the number of edges is linear to the number

of nodes in the graph. Thus, in cases where there is an essential tradeoff betweenconstant edge

lengthanduniform node movementwe can expect the forces which supportconstant edge lengthto

be opposed by a quadratic number of forces which supportuniform node movement. This results in

bad values forconstant edge lengthin these cases.

TheLinear Regressionmethod achieves good results in all scenarios but scenario 6 and 7. We

previously discussed the general difficulties which theLinear Regressionmethod has in computing

a good animation for scenario 6. By watching the corresponding animation (Figure 5.10 on page

167) we can see that the animation contains a comparatively high skew component. This distorts

the drawing and is ultimately to blame for the bad value forconstant edge length. Whether the bad

value forconstant edge lengthis compensated by the increased amount of structure in the motion

does not become obvious by watching it. It would be necessary to conduct HCI experiments to

answer this question.
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7.1.6 Unnecessary Node Intersections

The results for the measureunnecessary node intersectionsare shown in the following graphic:
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The Force Directedmethod, the3D Spring Embeddermethod, theCluster Analysismethod, and

the Linear Regression Analysismethod achieve very good values in all scenarios. In 5 of the 10

scenarios the values are significantly better. These 5 scenarios include the structured scenarios

(2,2b,3) and scenarios 7 and 8.

We already identified the good values for scenario 7 to be the result of an apparent trade-off

betweennode path lengthandunnecessary node intersectionsin this scenario. As theDirect Linear

Interpolationmethod, by definition, achieves optimal values fornode path length, it is not surprising

to observe that it gets rather bad results forunnecessary node intersections
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We further notice that theLinear Regressionmethod achieves comparatively bad results for

scenario 6. While the green nodes move towards the center of the graph in this scenario, the other

nodes remain on the periphery of the graph. As theLinear Regression Analysis methodaverages

the motions, the non-green nodes are unnecessarily forced to partly move towards the center of the

graph. This increases the chance of intersections.

7.2 Guidelines

The previous theoretical analysis and empirical evaluation of the proposed animation methods al-

lows us to propose the following guidelines for the use of animation methods in real world applica-

tions.

We cannot identify an overall best method regarding all measures. Rather, we found that the

proposed animation methods have individual advantages and disadvantages which makes the choice

of which method to use highly application dependent. The following table shows relevant appli-

cation parameters and the respective expected performance of the animation methods. The table

and the subsequent discussion are based on the results of applying the animation methods to the

benchmark suit1, the intuitive aesthetic impression of watching the corresponding animations, and

the accumulated experience which we gained by working with these animation methods during

our research. The numbers in the table range from 1 to 5, with 1 representing very good, and 5

representing very bad.

Method\ Property General Structure2 Sub-graph structure Graph Size

Linear 3 to 5 3 to 5 3 to 5 1

Force 2 to 4 2 to 4 2 to 4 5

Spring 3D 2 to 5 2 to 4 2 to 4 4

Regression 3 to 5 1 3 to 5 1

Cluster 4 to 5 1 to 3 1 to 4 1

In cases where results can differ significantly between different scenarios with the same property,

we give a range of numbers representing the range of results which are most likely to occur. This

means that the quality of the animation is determined by further, yet unknown, parameters in these

1See also appendix B
2We use the term “structure” to refer to transformations which can be approximated by an affine linear transformation.

This especially includes transformations with a significant rotational component.
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cases. For almost all parameters, it is possible to construct scenarios where a given method per-

forms arbitrarily bad or good. We discuss the advantages and disadvantages of each method in the

following paragraphs.

Direct Linear Interpolation TheDirect Linear Interpolationmethod can produce good anima-

tions for simple changes between graph drawings. In trivial cases, theDirect Linear Interpolation

method can even find an optimal solution. However, we found that in the majority of cases the

resulting animations are rather poor.

Orthogonal Interpolation TheOrthogonal Interpolationmethod moves the nodes of the graph

in parallel to they-axis and subsequently in parallel to thex-axis. This induces the illusion of a

rotating rigid three-dimensional object. The animation is perceived as aesthetically very pleasing.

It is doubtful, however, whether this kind of animation is actually increasing the users ability in

maintaining or adjusting the mental map. We have seen in benchmark scenario 5 (Page 137) that,

especially for changing graphs, the illusion of a constant three-dimensional object can be counter-

intuitive.

Force Directed TheForce Directedmethod produces good animations in almost all cases. It does

not quite reach the same quality as specialized methods for certain specially structured scenarios,

but still tends to produce good animations in these cases. TheForce Directedmethod has several

drawbacks, however. The most severe is the high computational cost. As theForce Directedmethod

takesO(n2) time to compute each frame, its application is limited to small graphs or non-interactive

systems. Further, the actual motion paths are only implicitly given by a set of non-linear equations.

This set is not analytically solvable. As a consequence, theForce Directedmethod cannot provide

random access to a given frame, does not allow reversing the direction of the animation3, and makes

it impossible to effectively control the speed of the animation.

3D Spring Embedder The 3D Spring Embeddermethod produces good animations for most

scenarios. Like theForce Directedmethod, it does not quite reach the same quality as specialized

methods for certain specially structured scenarios, but still tends to produce good animations in

these cases. The quality of the animations generated by the3D Spring Embeddermethod generally

tends to be slightly less than for theForce Directedmethod. The3D Spring Embeddermethod is

3Unless all previous positions are explicitly recorded.
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also more likely to produce bad animations than theForce Directedmethod, as can for example be

seen in scenario 7 on page 198. In this scenario, the3D Spring Embeddermethod is not able to find

a good local optimum for the animation framework. The resulting animation is quite inconsistent

and unstructured. The3D Spring Embeddermethod has several advantages over theForce Directed

method, however. As the whole animation is computed before the first frame is displayed, the

3D Spring Embeddermethod can render each frame in linear time, provide random access to any

frame, reverse the direction of the animation, and allows efficient control over the speed of the

animation. The biggest drawback of the3D Spring Embeddermethod is its high initialization cost.

Although it only hasO(n log n) time complexity, a high constant factor almost always results in

a noticeable gap before the animation starts on currently available computer systems. This gap

can extend to several minutes for large graphs in certain scenarios. On current computer systems,

the use of the3D Spring Embeddermethod is therefore limited to medium sized scenarios, non-

interactive systems, or applications where the computational cost for computing the changes to the

graph drawing outweigh the cost of initializing the animation.

Linear Regression Analysis The Linear Regression Analysismethod produces good results in

many cases. It is designed to identify and animate changes between drawings of graphs which can

be described by an affine linear transformation. These especially include transformations with a

significant rotational component. TheLinear Regression Analysismethod achieves very good re-

sults in these scenarios. For general scenarios, theLinear Regression Analysismethod produces

results which are at least as good as theDirect Linear Interpolationmethod for almost all cases.

TheLinear Regression Analysismethod averages the overall motion of all nodes of the graph. As

a consequence it achieves rather poor results if sub-graphs show different kinds of motions, as we

have seen in figure 6.16 on pages 234. In these cases it sometimes even produces worse animations

than theDirect Linear Interpolationmethod. We can therefore recommend theLinear Regression

Analysismethod as a general substitute forDirect Linear Interpolationwith the exception of scenar-

ios where distinctive and significantly different motion clusters are to be expected. When choosing

between using theLinear Regression Analysismethod and one of the force directed methods, time

is the determining factor. Apart from scenarios in which the transformation can be approximated

by an affine linear transformation of the graph, the force directed methods generally produce the

better animation. However, they take significantly longer to compute an animation. For interactive

systems the longer computation time may not be acceptable.
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The efficiently computabler2 value for the regression analysis can be taken into account when

deciding whether to use theLinear Regression Analysismethod for a given scenario. Although we

were not able to identify a clear threshold, in our experiencer2 values of more than 70% generally

indicate a good result for theLinear Regression Analysismethod.

Cluster Analysis We designed theCluster Analysismethod to overcome the inherent problem of

theLinear Regression Analysismethod in handling differently behaving sub-graphs. As scenario 3

on page 249 shows, theCluster Analysismethod is able to successfully identify different clusters

of structured motions. TheCluster Analysismethod is also able to handle scenarios with only one

cluster (scenario 2 on page 245), as well as the presence of noise (scenario 2b on page 245). For

general graphs, however, the results are often disappointingly poor. Although theCluster Analysis

method is often able to identify valid motion clusters, these clusters, in many cases, appear counter-

intuitive. The fact that theCluster Analysismethod only considers different kind of motions for

clustering and completely ignores edge-connectivity based clusters in the graph can be identified as

a reason for this effect.

7.3 Future Work

In this thesis we introduced different approaches to the problem of computing good animations

between given initial and target drawings of graphs. As the first systematic work in this area we

focused our research on an initial exploration of the solution space of the graph animation problem.

As a consequence, we had to neglect other interesting aspects and thus, many possible directions

for future research present themselves.

Criteria for good animations

We evaluated the proposed animation methods according to the measures and benchmark scenarios

which we introduced in chapter 3. The empirical evaluation has shown that the set of measures is

strongly related to our intuitive perception of the quality of graph animations. Further studies are

necessary, however, to formally validate this claim.

Thorough HCI experiments have to be conducted to validate and rank the set of animation

criteria. It is likely that further criteria, which determine the quality of a graph animation, may be

identified. A complete and weighted set of criteria for the perceptual quality of graph animations
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would be an extremely valuable contribution to this area.

Special cases of structured transformations

When designing animation methods we focussed on general or simply structured transformations

between graph drawings. Many special cases exist where our animation methods produce compar-

atively poor results, while humans are often able to instantly devise a good animation strategy for

these cases. Figure 7.1 shows such a case. It is easy for humans to see that uncurling the spiral from

figure 7.1.1 would be a good and simple way to animate this scenario. Our algorithms, however,

are not able to find this animation.

1 2

Figure 7.1: Example of a special case scenario which is challenging for graph animation algorithms. Al-
though humans can devise a good animation strategy immediately (uncurling of the spiral), our algorithms
are not able to find it.

Possible improvements of proposed methods

Some of the methods proposed in this thesis have potential for further improvement.

Force Directed Method The quality of animations which are generated by theForce Directed

method strongly depend on an appropriate setting of the weights of the individual forces. For our

experiments we used a fixed set of weights which we found to work well in general cases. Methods

to automatically and efficiently determine good weight ratios for given scenarios could be able to

improve theForce Directedmethod. We further noticed that theForce Directedmethod tends to

achieve comparatively poor values forconstant edge length(CEL). It might be possible to overcome

this problem by introducing additional forces.
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3D Spring Embedder Method The same remarks apply to the3D Spring Embeddermethod.

Better weight ratios and additional forces to overcome specific shortcomings could improve the

quality of the 3D Spring Embeddermethod significantly. Although the3D Spring Embedder

method is fast in theory, takingO(n log n) computation time, we notice a high constant factor

which limits its application on current computer systems. We use a straightforward modification of

the GEM spring embedder algorithm [42] to simulate the forces. An approach which specializes on

the specific properties of the3D Spring Embeddermethod might be able to decrease computation

time. Another shortcoming of the current implementation of the3D Spring Embeddermethod is

that node paths are interpolated on a straight line between the virtual key frames. This can result in

abrupt changes of direction and thus a non-smooth animation. Even in cases where the3D Spring

Embeddermethod finds the optimal solution to a given animation problem such behavior is possi-

ble. In the case of a graph performing a rotation, the node paths, as computed by the3D Spring

Embeddermethod, are piecewise straight line segments. For large graphs the change of direction at

each virtual key frame is noticeable. Figure 5.19 on page 186 shows such behavior to some degree.

This effect could be lessened by increasing the number of virtual key frames. However, the corre-

sponding increase in computation time, although it only adds to the constant factor, would be too

high. Another approach could be to interpolate the node paths using splines. Especially the use of

NURBS could yield a considerable improvement.

Cluster Analysis Method We have seen that theCluster Analysismethod performs very well

in structured scenarios, but has problems computing a good animation for non-specific changes

between graph drawings. Improved clustering methods might be able to overcome this problem.

Especially taking the edge-connectivity of the underlying graph into account might boost the perfor-

mance of theCluster Analysismethod. It may also be possible to try to extend the set of recognized

kinds of motions of sub graphs.

Choosing the appropriate method

Our benchmark tests revealed that our animation methods perform better for some scenarios than

for others. Especially, that there is no single method which performs better than all other methods

all the time. We were able to identify some criteria which are related to the expected quality of

an animation, such as ther2 value for theLinear Regressionmethod and theCluster Analysis

method, or the final energy of the spring system in the3D Spring Embeddermethod. However, the
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significance of these criteria and usable threshold values are, so far, unknown. Finding such criteria

would be a valuable contribution.
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A P P E N D I X A

Data Tables

Method Scenario SEC UNM CEL TEC NPL
Linear 1 130 5.020E+09 1,843,276 2,095 347,983
Ortho 1 103 3.589E+09 3,418,826 1,990 439,772
Force 1 40 9.840E+08 3,312,649 701 423,831

Spring 3D 1 119 2.376E+09 133,613 1,229 448,822
Regression 1 65 1.722E+09 1,203,360 490 404,066
Cluster 1 388 4.538E+09 41,883,085 3,765 445,023
Best 1 40 9.840E+08 133,613 490 347,983
Median 1 111 2.983E+09 2,577,963 1,610 431,802

Linear 1b 130 5.020E+09 1,843,276 2,138 347,983
Ortho 1b 145 5.206E+09 2,519,567 3,345 439,772
Force 1b 64 1.574E+09 2,450,485 635 524,618
Spring 3D 1b 117 2.278E+09 130,946 1,235 449,260
Regression 1b 65 1.722E+09 1,203,360 533 404,055
Cluster 1b 335 6.340E+09 28,847,622 4,254 491,297
Best 1b 64 1.574E+09 130,946 533 347,983
Median 1b 124 3.649E+09 2,146,880 1,687 444,516

Linear 2 12,891 1.675E+10 212,992 1,301,941 440,110
Ortho 2 6,811 5.489E+09 106,560 687,955 532,660
Force 2 179 8.419E+08 27,090 6,358 634,338
Spring 3D 2 4 9.863E+06 125 413 950,719
Regression 2 6 1.066E-20 0 578 691,249
Cluster 2 6 1.234E-20 0 560 691,294
Best 2 4 1.066E-20 0 413 440,110
Median 2 92 4.259E+08 13,608 3,468 662,794

Linear 2b 9,681 1.670E+10 202,046 582,018 439,723
Ortho 2b 1,695 5.484E+09 103,893 72,066 532,091
Force 2b 518 8.581E+08 37,058 11,203 635,514
Spring 3D 2b 158 1.084E+07 364 793 949,914
Regression 2b 105 6.805E+03 895 612 690,308
Cluster 2b 176 4.184E+06 11,733 1,398 690,412
Best 2b 105 6.805E+03 364 612 439,723
Median 2b 347 4.345E+08 24,396 6,301 662,911

Linear 3 40 3.962E+08 114,892 4,055 94,772
Ortho 3 24 3.194E+08 52,429 2,428 125,880
Force 3 1 1.477E+08 23,421 56 130,323
Spring 3D 3 16 1.569E+08 1,845 260 167,423
Regression 3 0 2.121E+08 48,123 0 113,145
Cluster 3 0 1.039E+08 720 0 132,007
Best 3 0 1.039E+08 720 0 94,772
Median 3 8 1.845E+08 35,772 158 128,102



Data Tables A-2

Method Scenario
Linear 1
Ortho 1
Force 1
Spring 3D 1
Regression 1
Cluster 1
Best 1
Median 1

Linear 1b
Ortho 1b
Force 1b
Spring 3D 1b
Regression 1b
Cluster 1b
Best 1b
Median 1b

Linear 2
Ortho 2
Force 2
Spring 3D 2
Regression 2
Cluster 2
Best 2
Median 2

Linear 2b
Ortho 2b
Force 2b
Spring 3D 2b
Regression 2b
Cluster 2b
Best 2b
Median 2b

Linear 3
Ortho 3
Force 3
Spring 3D 3
Regression 3
Cluster 3
Best 3
Median 3

UNI Frames Init Frame time T/F
129 101 0 50 0.5
256 101 0 60 0.6
26 101 0 5560 55.0

52 101 68,160 160 1.6
111 101 0 160 1.6
76 101 270 220 2.2
26 101 0 50 0
94 101 0 160 1.6

129 101 0 0 0.0
283 101 0 145 1.4
19 101 0 5270 52.2
55 101 44,930 60 0.6

111 101 0 890 8.8
104 101 380 1200 11.9
19 101 0 0 0

108 101 0 518 5.1

3,813,032 101 50 160 1.6
347,943 101 50 160 1.6
49,158 101 0 297250 2,943.1

0 101 12,960 110 1.1
0 101 490 780 7.7
0 101 2,200 1920 19.0
0 101 0 110 1

24,579 101 270 470 4.7

3,577,834 101 0 100 1.0
322,941 101 0 210 2.1
47,201 101 0 368440 3,647.9
5,177 101 122,650 2370 23.5

954 101 60 590 5.8
20,013 101 3,460 1800 17.8

954 101 0 100 1
33,607 101 30 1,195 11.8

23,519 101 0 60 0.6
2,916 101 0 0 0.0

335 101 0 2920 28.9
621 101 120,290 60 0.6
19 101 0 170 1.7
0 101 110 340 3.4
0 101 0 0 0

478 101 0 115 1.1



Data Tables A-3

Method Scenario SEC UNM CEL TEC NPL
Linear 4 190 2.877E+08 1,326,461 1,328 120,561
Ortho 4 389 6.645E+08 3,446,831 3,509 155,495
Force 4 258 3.104E+08 4,685,660 985 141,709
Spring 3D 4 225 3.124E+08 136,038 1,435 174,306
Regression 4 164 4.306E+08 2,341,735 1,066 130,556
Cluster 4 197 2.441E+08 1,909,777 1,160 127,250
Best 4 164 2.441E+08 136,038 985 120,561
Median 4 211 3.114E+08 2,125,756 1,244 136,133

Linear 5 420 1.470E+10 2,399,401 15,725 597,271
Ortho 5 1,174 1.245E+10 3,309,387 22,711 761,707
Force 5 327 5.029E+09 3,214,709 15,021 700,593
Spring 3D 5 895 1.183E+10 1,638,216 21,350 868,716
Regression 5 308 1.479E+10 2,626,936 13,095 763,763
Cluster 5 1,081 1.151E+10 43,154,023 8,438 673,484
Best 5 308 5.029E+09 1,638,216 8,438 597,271
Median 5 658 1.214E+10 2,920,822 15,373 731,150

Linear 6 7,095 2.385E+08 4,174,533 15,762 73,957
Ortho 6 6,788 2.044E+08 4,528,321 19,494 94,808
Force 6 4,853 2.111E+08 9,190,151 15,458 84,447
Spring 3D 6 8,200 2.143E+08 532,111 14,227 162,877
Regression 6 6,725 4.998E+08 10,812,041 8,301 118,195
Cluster 6 8,040 2.009E+08 9,184,635 16,768 88,536
Best 6 4,853 2.009E+08 532,111 8,301 73,957
Median 6 6,942 2.127E+08 6,856,478 15,610 91,672

Linear 7 1,011 4.858E+07 90,948 4,975 25,170
Ortho 7 873 4.028E+07 953,805 4,942 28,418
Force 7 518 1.841E+07 956,999 2,905 40,229
Spring 3D 7 697 3.280E+07 44,187 8,500 61,502
Regression 7 454 4.496E+07 678,300 3,718 59,502
Cluster 7 1,195 9.394E+07 11,209,526 4,916 50,338
Best 7 454 1.841E+07 44,187 2,905 25,170
Median 7 785 4.262E+07 816,052 4,929 45,283

Linear 8 46,185 2.829E+09 4,138 2,112,739 290,510
Ortho 8 40,254 7.195E+08 22,157 2,002,272 372,986
Force 8 28,706 8.743E+08 42,538 1,964,892 380,518
Spring 3D 8 44,363 1.005E+09 6,499 2,040,526 1,081,968
Regression 8 36,894 1.007E+09 7,932 1,962,955 326,451
Cluster 8 45,209 2.879E+09 453,584 289,169 341,731
Best 8 28,706 7.195E+08 4,138 289,169 290,510
Median 8 42,309 1.006E+09 15,045 1,983,582 357,359



Data Tables A-4

Method Scenario
Linear 4
Ortho 4
Force 4
Spring 3D 4
Regression 4
Cluster 4
Best 4
Median 4

Linear 5
Ortho 5
Force 5
Spring 3D 5
Regression 5
Cluster 5
Best 5
Median 5

Linear 6
Ortho 6
Force 6
Spring 3D 6
Regression 6
Cluster 6
Best 6
Median 6

Linear 7
Ortho 7
Force 7
Spring 3D 7
Regression 7
Cluster 7
Best 7
Median 7

Linear 8
Ortho 8
Force 8
Spring 3D 8
Regression 8
Cluster 8
Best 8
Median 8

UNI Frames Init Frame time T/F
169 101 0 0 0.0
269 101 0 50 0.5
56 101 0 1140 11.3

195 101 9,010 50 0.5
150 101 0 0 0.0
97 101 220 60 0.6
56 101 0 0 0

160 101 0 50 0.5

277 101 0 0 0.0
911 101 0 0 0.0
48 101 0 11680 115.6

195 101 2,310 120 1.2
307 101 110 170 1.7
266 101 550 290 2.9
48 101 0 0 0

272 101 55 145 1.4

185 101 0 50 0.5
144 101 0 0 0.0
44 101 0 840 8.3
89 101 12,900 0 0.0

288 101 50 0 0.0
192 101 330 50 0.5
44 101 0 0 0

165 101 25 25 0.2

2,692 101 0 0 0.0
1,305 101 0 0 0.0

77 101 0 390 3.9
483 101 12,970 100 1.0
198 101 50 0 0.0
197 101 220 230 2.3
77 101 0 0 0

341 101 25 50 0.5

7,427,591 101 50 730 7.2
1,470,055 101 50 420 4.2
1,385,040 101 0 1385040 13,713.3
2,369,383 101 87,500 430 4.3
2,915,604 101 110 2030 20.1
3,507,042 101 5,660 3300 32.7
1,385,040 101 0 420 4
2,642,494 101 80 1,380 13.7



A P P E N D I X B

Graphical Presentation of Benchmark Results
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Graphical Presentation of Benchmark Results B-2

Scenario 1b
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Graphical Presentation of Benchmark Results B-3

Scenario 2b

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SEC UNM CEL TEC NPL UNI Init T/F

Linear
Ortho
Force
Spring 3D
Regression 
Cluster

Scenario 3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SEC UNM CEL TEC NPL UNI Init T/F

Linear
Ortho
Force
Spring 3D
Regression 
Cluster



Graphical Presentation of Benchmark Results B-4
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Graphical Presentation of Benchmark Results B-5

Scenario 6
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