182 research outputs found
Loss of redundant gene expression after polyploidization in plants
Based on chromosomal location data of genes encoding 28 biochemical systems in allohexaploid wheat,Triticum aestivum L. (genomes AABBDD), it is concluded that the proportions of systems controlled by triplicate, duplicate, and single loci are 57%, 25%, and 18% respectively
Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols
<p>Abstract</p> <p>Background</p> <p>The study was designed to test the hypothesis that granulosa cell (GC) gene expression response differs between recombinant FSH and human menopausal gonadotropin (hMG) stimulation regimens.</p> <p>Methods</p> <p>Females < 35 years-old undergoing IVF for tubal or male factor infertility were prospectively randomized to one of two stimulation protocols, GnRH agonist long protocol plus individualized dosages of (1) recombinant (r)FSH (Gonal-F) or (2) purified human menopausal gonadotropin (hMG; Menopur). Oocytes were retrieved 35 h post-hCG, and GC were collected. Total RNA was extracted from each GC sample, biotinylated cRNA was synthesized, and each sample was run on Human Genome Bioarrays (Applied Microarrays). Unnamed genes and genes with <2-fold difference in expression were excluded.</p> <p>Results</p> <p>After exclusions, 1736 genes exhibited differential expression between groups. Over 400 were categorized as signal transduction genes, ~180 as transcriptional regulators, and ~175 as enzymes/metabolic genes. Expression of selected genes was confirmed by RT-PCR. Differentially expressed genes included A kinase anchor protein 11 (AKAP11), bone morphogenetic protein receptor II (BMPR2), epidermal growth factor (EGF), insulin-like growth factor binding protein (IGFBP)-4, IGFBP-5, and hypoxia-inducible factor (HIF)-1 alpha.</p> <p>Conclusions</p> <p>Results suggest that major differences exist in the mechanism by which pure FSH alone versus FSH/LH regulate gene expression in preovulatory GC that could impact oocyte maturity and developmental competence.</p
Fosmidomycin Uptake into Plasmodium and Babesia-Infected Erythrocytes Is Facilitated by Parasite-Induced New Permeability Pathways
., a mouse malaria parasite. and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery
- …