1,513 research outputs found

    Computationally efficient induction of classification rules with the PMCRI and J-PMCRI frameworks

    Get PDF
    In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classiļ¬cation rule induction, parallelisation of classiļ¬cation rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classiļ¬cation rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classiļ¬cation rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach.are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classiļ¬cation rule induction, parallelisation of classiļ¬cation rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classiļ¬cation rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classiļ¬cation rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach

    Random Prism: An Alternative to Random Forests.

    Get PDF
    Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prismā€™s classification accuracy by reducing overfitting

    Jmax-pruning: a facility for the information theoretic pruning of modular classification rules

    Get PDF
    The Prism family of algorithms induces modular classification rules in contrast to the Top Down Induction of Decision Trees (TDIDT) approach which induces classification rules in the intermediate form of a tree structure. Both approaches achieve a comparable classification accuracy. However in some cases Prism outperforms TDIDT. For both approaches pre-pruning facilities have been developed in order to prevent the induced classifiers from overfitting on noisy datasets, by cutting rule terms or whole rules or by truncating decision trees according to certain metrics. There have been many pre-pruning mechanisms developed for the TDIDT approach, but for the Prism family the only existing pre-pruning facility is J-pruning. J-pruning not only works on Prism algorithms but also on TDIDT. Although it has been shown that J-pruning produces good results, this work points out that J-pruning does not use its full potential. The original J-pruning facility is examined and the use of a new pre-pruning facility, called Jmax-pruning, is proposed and evaluated empirically. A possible pre-pruning facility for TDIDT based on Jmax-pruning is also discussed

    Reduction of nitrogen oxides by injection of urea in the freeboard of a pilot scale fluidized bed combustor

    Get PDF
    The ā€˜thermal deNOxā€™ process using urea has been investigated in a 1 MW fluidized bed combustor. NOx reductions of up to 76% were obtainable by using this method. The experimental results show that urea is at least as active as NH3, which is commonly used in this application, but which is far more toxic and corrosive. Emission levels of 200 mg māˆ’3 for NOx could be achieved by injecting the urea at a height of 2 m above the distribution plate in a molar ratio urea:NOx = 1.5. The SO2 emission value also appeared to be reduced when the urea was injected at a urea: NOx molar ratio > 4

    Memories from EAHIL 2022 Conference Rotterdam, The Netherlands, 1-3 June 2022

    Get PDF

    Better Evidence Syntheses: Improving literature retrieval in systematic reviews

    Get PDF
    • ā€¦
    corecore