10 research outputs found

    The Threat of Capital Drain: A Rationale for Public Banks?

    Get PDF
    This paper yields a rationale for why subsidized public banks may be desirable from a regional perspective in a financially integrated economy. We present a model with credit rationing and heterogeneous regions in which public banks prevent a capital drain from poorer to richer regions by subsidizing local depositors, for example, through a public guarantee. Under some conditions, cooperative banks can perform the same function without any subsidization; however, they may be crowded out by public banks. We also discuss the impact of the political structure on the emergence of public banks in a political-economy setting and the role of interregional mobility

    Acute stress impairs visual path integration

    No full text
    Acute stress exerts substantial effects on episodic memory, which are often mediated by glucocorticoids, the end-product of the hypothalamic-pituitary-adrenal axis. Surprisingly little is known, however, about the influence of acute stress on human spatial navigation. One specific navigational strategy is path integration, which is linked to the medial entorhinal cortex, a region harboring glucocorticoid receptors and thus susceptible for stress effects. Here, we investigated effects of acute stress on path integration performance using a virtual homing task. We divided a sample of healthy young male participants into a stress group (nstress = 32) and a control group (ncontrol = 34). The stress group underwent the socially evaluated cold-pressor test, while the control group underwent a non-stressful control procedure. Stress induction was confirmed via physiological and subjective markers, including an increase of salivary cortisol concentrations. We applied linear mixed models to investigate the effect of acute stress on path integration depending on task difficulty and the presence or absence of spatial cues. These analyses revealed that stress impaired path integration especially in trials with high difficulty and led to greater decline of performance upon removal of spatial cues. Stress-induced deficits were strongly related to impaired distance estimation, and to a lesser extent to compromised rotation estimation. These behavioral findings are in accordance with the hypothesis that acute stress impairs path integration processes, potentially by affecting the entorhinal grid cell system. More generally, the current data suggests acute stress to impair cognitive functions mediated by medial temporal lobe regions outside the hippocampus

    Dissociating effects of aging and genetic risk of sporadic Alzheimer’s disease on path integration

    No full text
    Path integration is a spatial navigation ability that requires the integration of information derived from self-motion cues and stable landmarks, when available, to return to a previous location. Path integration declines with age and Alzheimer’s disease (AD). Here, we sought to separate the effects of age and AD risk on path integration, with and without a landmark. Overall, 279 people participated, aged between 18 and 80 years old. Advanced age impaired the appropriate use of a landmark. Older participants furthermore remembered the location of the goal relative to their starting location, and reproduced this initial view without considering that they had moved in the environment. This lack of adaptative behavior was not associated with AD risk. In contrast, participants at genetic risk of AD (APOE ε4 carriers) exhibited a pure path integration deficit, corresponding to difficulty in performing path integration in the absence of a landmark. Our results show that advanced age impacts landmark-supported path integration, and that this age effect is dissociable from the effects of AD risk impacting pure path integration

    Hippocampal theta phases organize the reactivation of large-scale electrophysiological representations during goal-directed navigation

    No full text
    Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific goals and distinguishing them from other goals are incompletely understood. For short time scales, working memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intracranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue representations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation and provide new insights into the functions of the hippocampal theta rhythm

    Unmasking selective path integration deficits in Alzheimer’s disease risk carriers

    Get PDF
    Alzheimer's disease (AD) manifests with progressive memory loss and spatial disorientation. Neuropathological studies suggest early AD pathology in the entorhinal cortex (EC) of young adults at genetic risk for AD (APOE ε4-carriers). Because the EC harbors grid cells, a likely neural substrate of path integration (PI), we examined PI performance in APOE ε4-carriers during a virtual navigation task. We report a selective impairment in APOE ε4-carriers specifically when recruitment of compensatory navigational strategies via supportive spatial cues was disabled. A separate fMRI study revealed that PI performance was associated with the strength of entorhinal grid-like representations when no compensatory strategies were available, suggesting grid cell dysfunction as a mechanistic explanation for PI deficits in APOE ε4-carriers. Furthermore, posterior cingulate/retrosplenial cortex was involved in the recruitment of compensatory navigational strategies via supportive spatial cues. Our results provide evidence for selective PI deficits in AD risk carriers, decades before potential disease onset

    Voice Over IP. Competition Policy and Regulation

    No full text
    corecore