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Unmasking selective path integration deficits 
in Alzheimer’s disease risk carriers
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Stephan Getzmann6, Edmund Wascher6, Patrick D. Gajewski6, Jan G. Hengstler6, 
Marina Fernandez-Alvarez7, Mercedes Atienza7, Davide M. Cammisuli8, Francesco Bonatti9, 
Carlo Pruneti8, Antonio Percesepe9, Youssef Bellaali10, Bernard Hanseeuw10,11, Bryan 
A. Strange12,13, Jose L. Cantero7, Nikolai Axmacher1,14*

Alzheimer’s disease (AD) manifests with progressive memory loss and spatial disorientation. Neuropathological 
studies suggest early AD pathology in the entorhinal cortex (EC) of young adults at genetic risk for AD (APOE 
4-carriers). Because the EC harbors grid cells, a likely neural substrate of path integration (PI), we examined PI 
performance in APOE 4-carriers during a virtual navigation task. We report a selective impairment in APOE 
4-carriers specifically when recruitment of compensatory navigational strategies via supportive spatial cues was 
disabled. A separate fMRI study revealed that PI performance was associated with the strength of entorhinal 
grid-like representations when no compensatory strategies were available, suggesting grid cell dysfunction as a 
mechanistic explanation for PI deficits in APOE 4-carriers. Furthermore, posterior cingulate/retrosplenial cortex 
was involved in the recruitment of compensatory navigational strategies via supportive spatial cues. Our results 
provide evidence for selective PI deficits in AD risk carriers, decades before potential disease onset.

INTRODUCTION
Alzheimer’s disease (AD), by far the most common form of demen-
tia, is characterized by a progressive deterioration of cognitive func-
tions, starting with episodic memory loss and spatial disorientation 
(1). No causal therapies for AD are currently available, possibly be-
cause drugs that would otherwise be effective are applied too late 
(2). Hence, developing biomarkers and behavioral tests for identify-
ing subjects at risk for developing AD is a crucial goal of current AD 
research.

The 4 allele of the apolipoprotein E (APOE) gene is the most 
important genetic risk factor for late-onset AD (3). Thus, it may 
provide an opportunity for assessing subclinical alterations of 
behavior, brain structure, and brain function at very early disease 

stages (1, 4). However, previous studies and meta-analyses on 
APOE-behavior relationships in young and middle-aged healthy 
participants showed divergent results: While some described cognitive 
impairments [e.g., (5)], others reported improved functioning [e.g., 
(6)]—suggesting antagonistic pleiotropy—or no effects [e.g., (4, 5, 7)].

Here, we hypothesized that these divergent findings occur because 
APOE 4 effects on behavior are mediated by subtle, preclinical AD 
pathology in confined brain regions, which may be compensated by 
increased recruitment of unaffected areas—possibly resulting in 
altered cognitive strategies. Postmortem brain studies revealed first 
signs of neurodegeneration in the form of neurofibrillary tangles in 
APOE 4-carriers already in early adulthood (8). Because tau-related 
neurodegeneration correlates closely with cognitive dysfunction 
(9), this very early tauopathy may manifest in subtle behavioral 
alterations.

Among the first regions to be affected by neurofibrillary tangles 
is the entorhinal cortex (EC) (10), a hub for spatial navigation and 
memory. The EC contains spatially modulated cell types, including 
grid cells that fire at the vertices of equilateral triangles tiling the 
environment (11). In AD mouse models, early tauopathy in EC im-
pairs grid cell functioning and spatial memory performance (12). In 
humans, grid cell activity can be indirectly measured as “grid-like 
representations” (GLRs) via functional magnetic resonance imaging 
(fMRI) (13–15). These GLRs were described to be functionally relevant 
for memory and spatial navigation (4, 13, 16). We previously 
showed evidence for impaired GLRs in young APOE 4-carriers 
during virtual navigation in an arena (4). The spatial navigation 
performance of risk carriers was preserved, suggesting the use of 
compensatory strategies. Reduced GLRs were accompanied by 
relatively increased blood oxygenation level–dependent (BOLD) 
signals in the hippocampus (HC). Moreover, APOE 4-carriers 
navigated more often at the border of the arena, possibly in an 
attempt to stabilize their GLRs (4, 5, 17).

Together, these findings suggest that subtle alterations in the 
neural and behavioral signatures of spatial navigation may occur in 
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APOE 4-carriers already at an early age, and these changes may 
constitute prime candidates for neurocognitive markers of AD (1). 
However, to dissect navigational strategies, potential compensatory 
mechanisms, and their underlying neural computations, it is crucial 
to probe the navigational function of grid cells more directly.

Theoretical considerations (11), computational models (18), and 
empirical studies in rodents (19) and humans (16) suggest that grid 
cells particularly support path integration (PI) processes. PI is the 
process of estimating one’s current position based on information 
about previous positions, heading direction, speed, and time elapsed. 
Specifically, grid cells may provide the computational basis for rep-
resenting the integrated path (18) and for computing direct vectors 
to spatial goals (20, 21). Accurate goal vectors are essential for the 
“incoming phase” of PI tasks in which subjects have to return to 
their home location.

When only information from visual flow is available, PI inevitably 
leads to error accumulation (17, 18). This suggests that sparse envi-
ronments and longer navigational routes unmask subtle PI deficits 
in APOE 4-carriers. By contrast, when supportive spatial cues such 
as boundaries or landmarks are available [as in most previous studies, 
see (4, 5)], additional brain regions could be recruited, in particular 
HC (4) and posterior cingulate/retrosplenial cortex (PC/RSC) (21, 22). 
This may enable APOE 4-carriers to perform on a par with control 
participants. In line with these predictions, our study unmasks a 
specific deficit of APOE 4-carriers in PI when no supportive spatial 
cues are available and identifies the neural mechanisms underlying 
this deficit.

RESULTS
Experimental task and study sample
We assessed PI performance with a novel task, the “Apple Game” 
(Fig. 1 and fig. S1; Methods; see also movie S1). In each trial, partic-
ipants first navigated to a basket (“start phase”) whose location they 
were instructed to remember (“goal location”). Next, participants 
navigated toward a variable number of trees (“outgoing phase”), 
systematically varying outgoing distance (and thereby PI difficulty), 
until they found a tree with an apple (“retrieval location”). Basket 
and trees appeared consecutively and disappeared as soon as the 
participant reached their locations. From the retrieval location, par-
ticipants had to take the shortest route back to the basket location 
(incoming phase).

In different subtasks, participants either had to rely purely on 
visual flow [“pure PI” (PPI)] or were provided with supportive 
spatial cues in the form of a boundary [“boundary-supported PI” 
(BPI)] or an intramaze landmark [“landmark-supported PI” (LPI)]. 
PI performance was quantified via the distance between response 
location and correct location of the basket (“drop error”; for alter-
native metrics, see Fig. 1D).

We conducted the paradigm in N = 267 healthy participants 
genotyped for APOE across four different European sites (“APOE 
sample”; n = 65 APOE 3/4-carriers, risk group; n = 202 APOE 
3/3-carriers, control group; age range, 18 to 75 years; mean age, 
37.7 years; 38.6% male; table S1). Control and risk group did not 
differ regarding demographic characteristics or general cognitive 
status as indicated by mini-mental state examination [MMSE (23); 
table S2, fig. S1, and Supplementary Text]. All older participants 
(≥42 years, threshold established by means of kmeans clustering; 
see Methods) showed normal cognitive abilities (MMSE scores of 

≥25). Additional analyses excluded an effect of APOE on time-
counting strategies during the task, subjective navigation perform
ance in everyday life, and pre-experimental navigation types (table S2 
and Supplementary Text).

For a subgroup of this sample, structural MRI (sMRI) data were 
available, allowing us to establish relationships between behavioral 
performance and brain structure (“sMRI sample”; n = 99 participants; 
n = 23 risk carriers, n = 76 controls; table S3 and fig. S1). Further-
more, we recruited a separate group of n = 35 participants who 
completed a variant of the task inside the MR scanner (“fMRI sample”; 
table S1).

Determinants of PI performance
We analyzed PI performance as a function of APOE genotype, sub-
task, and path distance in the APOE sample. We used a series of 
linear mixed models with “subtask” (PPI, BPI, or LPI) and “path 
distance” as within-subject variables and “APOE” as between-subject 
variable. Path distance refers to either “outgoing distance” (i.e., the 
accumulated path distance during the outgoing phase; Fig. 1C, 
model 1a, and Table 1; Methods) or “incoming distance” (i.e., the 
Euclidean distance between retrieval location and goal location; 
Fig. 1C, model 1b). When reporting inference statistics, “all” or 
“both” always refer to the two models with either one of the two 
path distances. “Subject” and “site” were added as random factors, 
and “sex” and “age” as covariates (for main effects and for interac-
tions with subtask and genotype). Post hoc comparisons were 
Tukey-corrected for multiple comparisons (number of subtasks).

 We found main effects of subtask and both path distance 
measures on PI performance (all F ≥ 466.42, all P < 0.001 for the 
two models with incoming and outgoing distance; fig. S2). Pairwise 
comparisons showed that performance was worse in the PPI as 
compared to the BPI and LPI subtasks (all z ≥ 22.25, all PTukey < 0.001). 
Performance in the BPI subtask was also worse than in the LPI sub-
task (both z ≥ 6.44, both PTukey < 0.001).

Notably, incoming distance had a more pronounced effect in the 
PPI subtask than in the two other subtasks, as shown by a signifi-
cant subtask by incoming distance interaction (F = 99.17, P < 0.001; 
fig. S2). This was not the case for outgoing distance (F = 1.02, 
P = 0.361). Post hoc analyses confirmed that incoming distance had 
a stronger effect on performance in the PPI subtask than in the two 
other subtasks (both z ≥ 9.80, both PTukey < 0.001), with no differ-
ence between BPI and LPI (z = 1.11, PTukey = 0.511). Furthermore, 
we encountered significant main effects of sex and age (all F ≥ 63.49, 
all P < 0.001): Younger age and male sex predicted better perform
ance [see fig. S2 (also for interactions involving covariates)]. 
These results show that the absence of supportive spatial cues not 
only reduces PI performance but also increases the impact of longer 
incoming distances, which is presumably related to larger error 
accumulation (17, 18).

Unmasking of APOE effects on PI in the absence of 
supportive spatial cues
We next analyzed effects of APOE on performance. No main (subtask-
independent) effect of APOE was observed (both F ≤ 0.04, both 
P ≥ 0.850), in line with a previous study showing generally unim-
paired PI performance in APOE 4-carriers (5). However, we ob-
served a significant APOE by subtask interaction (both F ≥ 12.60, 
both P < 0.001; Fig. 2A), indicating different APOE effects on 
performance in the individual subtasks. The interaction was driven 

 on A
ugust 31, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Bierbrauer et al., Sci. Adv. 2020; 6 : eaba1394     28 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 21

by worse performance of risk carriers as compared to controls spe-
cifically in the PPI subtask (both z ≥ 2.44, both PTukey ≤ 0.039), 
while there was no difference in the BPI (both z ≤ 0.05, both 
PTukey ≥ 0.998) or LPI subtasks (both z ≤ 0.98, both PTukey ≥ 0.593). 
To scrutinize this result, we compared performance as a function of 
APOE between the PPI subtask and either the BPI or LPI subtask 

(Fig. 2B). These contrasts measure a specific impairment of PI per-
formance in the absence of supportive spatial cues. The perform
ance of risk carriers declined more strongly than that of controls in 
the PPI subtask when compared to either the BPI subtask (both 
z ≥ 2.86, both PTukey ≤ 0.012) or the LPI subtask (both z ≥ 4.10, 
both PTukey < 0.001). There was no APOE effect on the performance 

Fig. 1. Experimental paradigm. (A) Participants performed a novel PI task (the Apple Game) in a virtual environment. The task comprised three subtasks that differed 
with regard to the presence or absence of supportive spatial cues: the PPI subtask without any supportive cue, the BPI subtask with a circular boundary, and the LPI sub-
task with an intramaze landmark (lighthouse) close to the center of the environment. (B) In each trial, participants collected a basket (start phase) and tried to remember 
its location (goal location). After navigating toward a variable number of trees (1 to 5; outgoing phase), which disappeared after having been reached, participants had to 
find their way back to the goal location (incoming phase). Last, they received feedback via different numbers of stars, depending on response accuracy. (C) Outgoing 
distance refers to the cumulated distance during the outgoing phase, and incoming distance refers to the Euclidean distance between retrieval location (tree with apple) 
and goal location (basket). (D) PI performance was assessed as the distance between the correct goal location and the response location (drop error). The drop error can 
be separated into the distance error (i.e., the difference between the retrieval-to-goal distance and the retrieval-to-response distance) and the rotation error (i.e., the dif-
ference between the retrieval-to-goal rotation and the retrieval-to-response rotation). (E) The behavioral task comprised 8 practice trials followed by 16 trials in each 
subtask (short version; in the long version, all subtasks were performed twice, resulting in 32 trials in each subtask). (F) The fMRI task consisted of up to nine practice trials 
during the structural scan, followed by two functional runs with six blocks of four trials each. See also fig. S1 and movie S1.
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difference between the BPI and LPI subtask (both z ≤ 1.26, both 
PTukey ≥ 0.410). Post hoc analyses revealed that the effect of geno-
type on performance was driven by increased rotation errors (Fig. 1D, 
fig. S3, and Supplementary Text).

Moreover, we observed an interaction between APOE and in-
coming distance (F = 3.94, P = 0.047; Fig. 2C), presumably reflecting 
stronger error accumulation (17, 18) in risk carriers than controls. 
This effect was not significant for outgoing distance (F = 1.86, 
P = 0.173). APOE effects were significantly stronger for incoming 
than outgoing distance (three-way interaction between outgoing 
distance, incoming distance, and APOE in a model including both 
distance types; F = 4.68, P = 0.030; model 1c). This indicates that 

performance in risk carriers is particularly affected by the incoming 
(i.e., Euclidean) distance between retrieval and goal location.

Because risk carriers’ performance was on par with controls 
when supportive spatial cues were present, we hypothesized that the 
distance to these cues determines their performance more than in 
controls. We thus investigated PI performance as a function of 
“spatial cue distance” (i.e., the distance between the goal location 
and the boundary or the landmark; models 2a and 2b). Generally, 
higher distances from the boundary and lower distances from the 
landmark were associated with higher performance (main effects of 
goal-to-boundary distance and goal-to-landmark distance: both 
F > 342.45, both P < 0.001). Better PI performance in trials with 

Table 1. Statistical models.  

Model Criterion Predictors (within 
subject)

Predictors (between 
subject) Covariates Random effects

Effects of APOE, subtask, and path distance on performance

1a Performance Subtask, outgoing 
distance APOE Age, sex Subject, site

1b Performance Subtask, incoming 
distance APOE Age, sex Subject, site

1c Performance

Subtask, (outgoing and 
incoming) path 

distance, type of 
distance

APOE Age, sex Subject, site

Effects of landmark and boundary

2a Performance Goal-to-boundary 
distance APOE Subject, site

2b Performance Goal-to-landmark 
distance APOE Subject, site

2c Distance to boundary APOE Subject, site

2d Distance to landmark APOE Subject, site

Effects of EC volume, APOE, subtask, and path distance on performance

3a Performance Subtask, outgoing 
distance

APOE, relative EC 
volume Age, sex Subject

3b Performance Subtask, incoming 
distance

APOE, relative EC 
volume Age, sex Subject

Effects of HC volume, APOE, subtask, and path distance on performance

4a Performance Subtask, outgoing 
distance

APOE, relative HC 
volume Age, sex Subject

4b Performance Subtask, incoming 
distance

APOE, relative HC 
volume Age, sex Subject

Effects of PC/RSC volume, APOE, subtask, and distance on performance

5a Performance Subtask, outgoing 
distance

APOE, relative PC/RSC 
volume Age, sex Subject

5b Performance Subtask, incoming 
distance

APOE, relative PC/RSC 
volume Age, sex Subject

Mechanistic model to explain path integration performance

6 Performance Subtask, incoming 
distance

EC integrated path 
representations during 

incoming phase, HC 
goal proximity 

representations during 
incoming phase, pmEC 
GLRs, PC/RSC landmark 

representations

Subject
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higher distances between the goal location and the environmental 
boundary may be counterintuitive, because boundaries constitute 
an additional visual cue. However, goal locations in the center of the 
environment have a lower range of possible drop errors than goal 
locations in the periphery of the environment, leading to lower 
drop errors per se, as described previously (24).

In addition, the performance of risk carriers declined more 
strongly with increasing goal-to-landmark distance than the perform
ance of controls (interaction effect between goal-to-landmark 
distance and APOE: F = 4.55, P = 0.033; model 2b; Fig. 2D). By con-
trast, goal-to-boundary distance did not exhibit different effects in 
risk and control participants (interaction effect between goal-to-
boundary distance and APOE: F = 2.59, P = 0.107; model 2a; 
Fig. 2D).

Irrespective of PI performance, we investigated the mean dis-
tance of participants’ navigation to the boundary or the landmark 

(only during the incoming phase, as movements during the outgo-
ing phase were determined by the trees; models 2c and 2d). This 
revealed that risk carriers showed a different navigational pattern: 
They navigated in closer proximity to the landmark (F = 6.20, 
P = 0.013; model 2d; Fig. 2E), suggesting that they used the land-
mark information to a higher degree to guide their behavior. By 
contrast, risk carriers navigated at similar distances to the boundary 
as controls (F = 1.35, P = 0.245; model 2c, Fig. 2E).

In summary, a selective PI deficit in APOE 4-carriers was un-
masked when environments lacked spatial cues and participants 
had to rely purely on PI. When environmental landmarks were 
available, risk carriers relied more strongly on their proximity.

Brain structural determinants of APOE effects on PI
How is performance in the different subtasks related to brain volume 
in areas relevant for spatial navigation, and how are these relationships 

Fig. 2. Performance as a function of genotype, distances, and subtask. (A) Performance (which is inversely related to drop error) is specifically impaired in risk carriers 
when no supportive spatial cues are available, i.e., in the PPI subtask. (B) Risk carriers benefit more from environmental landmarks and boundaries than controls. (A) and 
(B) depict results from model 1b; results from model 1a are statistically equivalent. (C) Incoming (but not outgoing) distance is more closely related to spatial memory 
performance in risk carriers than controls (model 1c). (D) Goal-to-landmark distance (but not goal-to-boundary distance) is more relevant in risk carriers than controls 
(models 2a and 2b). (E) Movement-to-landmark distance (but not movement-to-boundary distance) is significantly lower in risk carriers than controls (models 2c and 2d). 
Y axes show parameter estimates resulting from the different models; error bars, SEM; *P < 0.05, **P < 0.01, and ***P < 0.001. Control, APOE 3/3-carriers; Risk, APOE 
3/4-carriers; PI, path integration; BPI, boundary-supported PI; LPI, landmark-supported PI; vm, virtual meters. See also figs. S1 to S3 and tables S1 and S2.
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modulated by APOE? We analyzed PI performance as a function of 
relative gray matter volume in three regions of interest (ROIs): EC, 
HC, and PC/RSC. We used mixed models with subtask and path 
distance (outgoing distance, models 3a to 5a; or incoming distance, 
models 3b to 5b) as within-subject variables, APOE and “volume” of 
one of the three ROIs as between-subject variables, and subject as 
random factor (sMRI sample; Table 1 and Methods). Age and sex 
were added as covariates. Because these models contain two contin-
uous predictors of interest (path distance and volume), post hoc 
comparisons were performed on quintiles of the path distance predictor 
(Tukey-corrected for number of compared quintiles). Qualitatively 
identical results were obtained when the path distance predictor 
was subdivided into quartiles or tertiles (Supplementary Text).

Risk carriers and controls did not differ regarding age, sex, 
whole-brain volume, and relative volume in any ROI (table S3 and 
fig. S1), in line with previous findings (25). Also, relative ROI vol-
umes did not directly predict performance in any subtask, for either 
controls or risk carriers (all z ≤ 1.68, all PBonferroni ≥ 0.279). However, 
an effect of EC volume on performance in risk carriers was un-
masked when analyzed in relationship to incoming distance: When 
we examined the effect of EC volume on performance (model 3b), 
we encountered a significant interaction with APOE and incoming 
distance (F = 6.70, PBonferroni = 0.030; Fig. 3A). While EC volumes 
did not predict performance for shorter incoming distances in 
either risk carriers or controls [800 to 2580 virtual meters (vm): all 
z ≤ 1.24, all PTukey ≥ 0.214], they exerted a significant effect for 
longer incoming distances specifically in risk carriers (4360 to 7920 vm: 
all z ≥ 2.17, all PTukey ≤ 0.030), but not in controls (all z ≤ 1.87, 
all PTukey ≥ 0.061). Effects in risk carriers were significantly larger 
than in controls at large incoming distances (7920 vm: z = 2.56, 
PTukey = 0.044), but not at lower incoming distances (800 to 6140 vm: 
all z ≤ 2.13, all PTukey ≥ 0.126). No comparable effects were found 
for outgoing distance (model 3a), in HC (model 4a/4b), or PC/RSC 
(model 5a/5b). These results show a selective influence of EC 
volume on performance in risk carriers for longer incoming dis-
tances, suggesting that effects of subtle structural degradation of the 
EC in risk carriers become visible in situations of large potential 
error accumulation.

Age-related modulations of APOE effects on PI performance
Age was included as a covariate in models 1a to 1c, and we described 
interactions with age in fig. S2. Notably, we found a significant sub-
task by APOE by age interaction (F = 5.79, P = 0.003; fig. S2F), 
suggesting that the difference between risk carriers and controls 
in the PPI condition might be modulated by age. However, risk 
carriers did not differ from controls with respect to age-related 
decline of performance in any of the subtasks (all z  <  1.79, all 
PTukey = 0.171).

We nevertheless aimed at a more detailed understanding of the 
age-related modulations of our APOE effects, which is crucial to 
evaluate the possible implications of our findings for preclinical 
dementia diagnosis. We therefore split the APOE sample into a 
“younger” subsample (n = 163; mean age ± SD, 24.32 ± 4.87) and an 
“older” subsample (n = 104; mean age ± SD, 58.71 ± 7.75) in a 
data-driven manner using MATLAB’s kmeans clustering algorithm. 
This method resulted in a cutoff age of 42 years.

The proportion of risk carriers did not differ between the younger 
(risk group, n = 35; control group, n = 128) and older age group 
[n = 30; n = 74; 2(1) = 1.87, P = 0.190]. The proportion of male and 

female participants also did not differ between the two age groups 
(2 = 0.55, P = 0.269).

We then re-performed all analyses separately for the younger 
and older group. First, we examined the results of model 1 in detail. 
In both age groups, we found main effects of subtask and both path 
distance measures on PI performance (all F ≥ 77.76, all P < 0.001). 
Pairwise comparisons showed that performance in the PPI subtask 
was worse than in the BPI and LPI subtasks (all z ≥ 10.69, all 
PTukey < 0.001). Performance was better in LPI than in BPI (both 
z ≥ 2.35, both PTukey ≤ 0.049). In both groups, we encountered a 
significant subtask by incoming distance interaction (both F ≥ 27.68, 
both P < 0.001), but no subtask by outgoing distance interaction 
(both F ≤ 1.10, both P ≥ 0.334). Incoming distance had a stronger 
effect on performance in the PPI subtask than in the two other sub-
tasks (all z ≥ 6.13, all PTukey < 0.001), and there was no difference 
between BPI and LPI (both z ≤ 1.85, both PTukey ≥ 0.154). More-
over, we found a significant main effect of sex in both age groups 
(with females performing worse; all F ≥ 6.56, all P ≤ 0.012). 
Furthermore, we also found significant main effects of age in both 
subsamples (all F ≥ 4.99, all P ≤ 0.028). These effects replicate the 
findings in the entire sample and thus demonstrate that the age 
distribution of our sample did not significantly influence the main 
results of our study.

In both age groups, we found no significant main effect of APOE 
(all F ≤ 0.10, all P ≥ 0.756) but observed significant APOE by sub-
task interactions on PI performance (all F ≥ 3.95, all P ≤ 0.019; 
Fig. 4A). These effects again replicate the findings in the entire sample. 
Pairwise comparisons revealed that the performance of risk carriers 
in the PPI subtask was significantly worse than the performance 
of controls only in the older age group (both z ≥ 2.72, both 
PTukey ≤ 0.018), but not in the younger age group (both z ≤ 1.70, 
both PTukey ≥ 0.206). This result suggests that the adverse effect of 
APOE 4 on PI performance exacerbates with increasing age.

In both age groups, we did not observe a difference between risk 
carriers and controls when comparing PI performance in the BPI 
versus the LPI subtask (all z ≤ 1.86, all PTukey ≥ 0.151). The younger 
age group showed no difference between risk carriers and controls 
when comparing PI performance in the PPI versus the BPI subtask 
(both z ≤ 1.72, both PTukey ≥ 0.197; Fig. 4B). There was a trend for 
a difference between risk carriers and controls when comparing PI 
performance in the PPI versus the LPI subtask (both z ≥ 2.06, both 
PTukey ≤ 0.099). In the older age group, risk carriers performed sig-
nificantly worse in the PPI subtask as compared to both the BPI 
subtask and the LPI subtask (all z ≥ 2.96, all PTukey ≤ 0.009: Fig. 4B). 
These results show again that the adverse effect of APOE 4 on PI 
performance exacerbates with increasing age.

We did not observe any APOE by incoming distance interac-
tions in either age group (both F ≤ 0.61, both P ≥ 0.436; Fig. 4C), 
presumably due to reduced statistical power. Model 1c, in which we 
analyzed three-way interactions between outgoing distance, incom-
ing distance, and APOE, was thus not applied.

Next, we examined the results from model 2 in detail, which 
assessed the effects of boundary and landmark distance from the goal 
location on PI performance. Higher distances from the boundary 
and lower distances from the landmark were associated with better 
performance in both age groups (all F ≥ 198.03, all P < 0.001), rep-
licating our previous results. We did not observe the significant 
APOE by goal-to-landmark distance effect in either age group (both 
F ≤ 1.47, both P ≥ 0.225; Fig. 4D), presumably due to reduced 
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statistical power in the subsamples. Instead, we observed a significant 
interaction of APOE with goal-to-boundary distance in the young 
sample only (F = 6.25, P = 0.012; old sample: F = 0.49, P = 0.485; 
Fig. 4D), suggesting that young risk carriers benefit more from central 
positions of goal locations.

Last, young risk carriers navigated closer to the landmark (F = 3.96, 
P = 0.047) and older risk carriers showed a trend for this effect 
(F = 3.02, P = 0.085; Fig. 4E), largely replicating the result from the 
entire sample. We did not encounter differences in the movement-
to-boundary distance between genotypes (both F ≤ 1.20, both 
P ≥ 0.274; Fig. 4E). We present a synopsis of all results in table S4.

In addition, we tested whether there was an inverse U-shaped 
effect of APOE across the life span, by adding a quadratic age vari-
able to models 1a and 1b (“age2”). Adding age2 did not improve 
model fit [both 2(1) ≤ 0.22, both P ≥ 0.635]. We found no main 
effect of age2 (both F ≤ 0.81, both P ≥ 0.370) or interactions with 
subtask or APOE (all F ≤ 1.76, all P ≥ 0.171), suggesting that there 
were no inverse U-shaped effects of APOE across the life span.

In summary, these analyses show that performance differences 
between subtasks, effects of incoming distance, and the interaction 

between subtask and incoming distance are present in both age 
groups. We found significant subtask by APOE interactions in both 
age groups, with a pattern of results replicating the findings in the 
entire cohort. We found that the adverse effect of APOE 4 on PPI 
performance was present in the older subsample only, suggesting that 
this APOE effect may be mediated by age-dependent accumulation 
of preclinical AD pathology. This interpretation prompts future studies 
that assess whether PI deficits are related to AD biomarkers.

Some effects did not replicate in the individual age groups: There 
was no interaction between APOE and incoming distance (i.e., a 
stronger reduction in performance with larger incoming distances 
for risk carriers as compared to controls), and there was no interac-
tion between APOE and goal-to-landmark distance (i.e., a stronger 
reduction in performance with larger distances between goal and 
landmark in risk carriers as compared to controls). This is probably 
due to lower statistical power in each subsample. The younger sub-
sample showed a significant APOE by goal-to-boundary distance 
interaction that was not present in the entire cohort (i.e., risk carriers 
showed a more pronounced performance increase in trials with 
more central goal locations).

Fig. 3. Performance as a function of genotype, age, incoming distance, and EC gray matter volume. (A) EC gray matter volume predicts performance only during PI 
with long incoming distances (middle to right panels) and only in risk carriers (model 3b). (B) In younger risk carriers, EC gray matter volume predicted performance 
during PI trials with long incoming distances. In older risk carriers, EC gray matter volume predicted performance during the majority of all trials (model 3b). The young 
group comprises subjects aged 18 to 28 years; the older group contains subjects aged 53 to 75 years (see age histogram in fig. S1C). As the models contained two contin-
uous predictors, one of them (incoming distance) was discretized into quintiles for post hoc tests and graphical depiction. Thicker lines mark slopes that are significantly 
different from zero. Y axes show parameter estimates resulting from the different models; shaded areas, SEM. Control, APOE 3/3-carriers; Risk, APOE 3/4-carriers; 
% volume, percent of whole-brain volume. See also fig. S1 and tables S1 and S3.
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Next, we re-performed the sMRI analysis after splitting the sMRI 
sample into two age groups. This was done according to the split 
that is apparent from the age histogram (young group: ≤28 years, 
n = 48; mean age ± SD, 22.42 ± 2.28; older group: ≥53 years, n = 51; 
mean age ± SD, 63.22 ± 5.42; fig. S1C). The proportion of risk carriers 
did not differ between the younger (risk group, n = 9; control group, 
n = 39) and older (n = 14; n = 37) age group [2(1) = 1.05, P = 0.348]. 
The proportion of male and female participants also did not differ 
between the two age groups [2(1) = 0.01, P ≈ 1.000].

Similar to our main analysis, EC volume did not predict perfor-
mance in either the older group or the younger group (all F ≤ 2.07, 
all P ≥ 0.157). In the older group, we observed a trend for a three-

way interaction between incoming distance, APOE, and relative 
EC volume (F = 3.60, P = 0.058; Fig. 3B), similar to what we had 
found in the entire sample. This effect was not present in the younger 
group (F = 0.29, P = 0.593).

To understand the data in detail, we conducted post hoc tests on 
quintiles of incoming distances. In control participants, PI perfor-
mance did not depend on EC volume in either age group (all 
t ≤ 1.22, all PTukey ≥ 0.221). By contrast, and as in the entire sample, 
risk carriers exhibited significant relationships between EC volume 
and performance at various incoming distances (see Fig. 3B). In 
younger risk carriers, EC volume was positively related to perform
ance at high incoming distances (>4360 vm: both t ≥ 3.10, both 

Fig. 4. Performance as a function of genotype, distances, and subtask split by age groups. The younger age group comprises subjects aged 18 to 41 (n = 163), and 
the older age group comprises subjects aged 42 to 75 (n = 104). (A) Performance (which is inversely related to drop error) is specifically impaired in older risk carriers when 
no supportive spatial cues are available, i.e., in the PPI subtask. (B) In older participants, risk carriers benefit more from environmental landmarks and boundaries than 
controls. (A) and (B) depict results from model 1b; results from model 1a are statistically equivalent. (C) In both age groups, neither incoming nor outgoing distance is 
more closely related to spatial memory performance in risk carriers than controls. (D) In the younger age group, goal-to-boundary distance is more relevant in risk carriers 
than in controls (models 2a and 2b). (E) In younger participants, movement-to-landmark distance (but not movement-to-boundary distance) is significantly lower in risk 
carriers than in controls (models 2c and 2d). Y axes show parameter estimates resulting from the different models; error bars, SEM. +P < 0.10, *P < 0.05, **P < 0.01, and 
***P < 0.001. Control, APOE 3/3-carriers; Risk, APOE 3/4-carriers. See also figs. S1 to S3 and tables S1, S2, and S4.
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PTukey ≤ 0.002). In older risk carriers, positive relationships between 
EC volume and performance occurred at almost all incoming dis-
tances (<7920 vm: all t ≥ 2.10, all PTukey ≤ 0.036). Because we did 
not observe a three-way interaction between EC volume, genotype, 
and incoming distance for either age group (see above), these differ-
ences should be considered cautiously, however.

Thus, these analyses confirm that EC volume predicted PI perfor-
mance specifically in risk carriers, underscoring that their EC integ-
rity is of particular importance for PI performance. In conclusion, 
while most APOE effects occurred across the entire age range, the 
adverse effect of APOE 4 on PPI seemed to be confined to older 
participants, underlining the relevance of our findings for detecting 
older persons at risk for cognitive vulnerability and AD.

fMRI correlates of integrated path and goal proximity during PI
To understand the neural basis of PI and the impact of supportive 
spatial cues in our paradigm, we conducted an fMRI study with an 
adapted version of the task (fMRI sample; see Methods). Because we 
were interested in the physiological fMRI correlates of our PI task, 
the fMRI sample comprised a group of young and healthy partici-
pants, which were recruited irrespective of APOE genotype. First, 
we analyzed neural representations of two fundamental metrics of 
PI: the instantaneous integrated path (i.e., the length of the travelled 
path during either the outgoing or incoming phase) and the instan-
taneous goal proximity (i.e., the distance between the subject’s 
current location and the goal). We created a general linear model 
(GLM) with regressors for the entire time of movement during the 
outgoing and incoming phase, separately for each subtask (fig. S4). 
In two separate analyses, we included either integrated path or goal 
proximity as time-varying parametric modulators during movement 
(sampled at a temporal resolution of 5 Hz). We tested how these 
measures of PI were related to BOLD activity in the three ROIs (EC, 
HC, and PC/RSC). PC/RSC was defined as the posterior-ventral 
part of the cingulate gyrus [following (26, 27)], resulting in a mask 
slightly larger than RSC proper. P values were false discovery rate 
(FDR)–corrected for multiple comparisons (number of ROIs and 
number of contrasts).

During the outgoing phase, EC and HC showed pronounced 
deactivation with increasing integrated path (both t34 ≥ 4.68, both 
PFDR < 0.001; Fig. 5A). This was reversed during the incoming 
phase, where we observed increased activation in both areas with 
integrated path (both t34 ≥ 2.55, both PFDR ≤ 0.046; Fig. 5A). When 
analyzed separately for the different subtasks, we found that EC and 
HC activity levels always differed significantly from zero in the PPI 
subtask (Fig. 5C and Supplementary Text). By contrast, integrated 
path did not predict activity in the LPI subtask, suggesting that this 
representation is less relevant in this subtask. Activity in PC/RSC 
did not show any relationship with integrated path.

During both the outgoing and incoming phases, HC activity in-
creased with goal proximity (both t34 ≥ 2.96, both PFDR ≤ 0.028; 
Fig. 5B). In EC, we observed this effect only during the outgoing 
phase (t34 = 2.86, PFDR = 0.029), but not during the incoming phase 
(t34 = 1.12, PFDR = 0.813). No relationship between goal proximity 
and PC/RSC activity was observed.

As integrated path and goal proximity are typically related in the 
real world and strongly correlated in our task as well ( = −0.38, 
Z = 3.72, P < 0.001), we included them in two separate GLMs. We 
conducted a control analysis to demonstrate that representations of 
integrated path were not simply side effects of goal proximity repre-

sentations by including both parametric modulators into a single 
GLM (see Methods). Results were highly similar (Supplementary Text).

Together, these results show that BOLD responses in EC and HC 
represent integrated path and goal proximity, two related variables 
that are crucial for solving PI tasks. This is in accordance with fMRI 
studies in humans [e.g., (20)], showing representations of goal 
direction and distance in EC and HC.

fMRI correlates of spatial information from boundaries 
and landmarks
Next, we analyzed which brain regions are recruited by supportive 
spatial cues. We used a GLM with “task phase” (start phase, outgo-
ing phase, incoming phase, feedback) and subtask (PPI, BPI, and 
LPI) as regressors (fig. S5) and contrasted activity during the PPI 
subtask with activity during the BPI or LPI subtasks. In PC/RSC, 
activity increased during the LPI as compared to the PPI subtask 
(t34 = 4.27, PFDR < 0.001; Fig. 5D) and did not differ between the BPI 
versus the PPI subtask (t34 = 2.24, PFDR = 0.095). Activity in EC and HC 
did not differ between the subtasks (all t34 ≤ 0.97, all PFDR ≥ 0.385).

An exploratory whole-brain analysis confirmed these results and 
additionally showed higher activity in V1 and adjacent visual areas 
during the BPI and LPI subtasks, probably due to the higher amount 
of visual information (Fig. 5E; for all clusters, see table S5). Hence, 
PC/RSC appears to be specifically involved in processing spatial in-
formation derived from environmental landmarks, in line with pre-
vious results (21, 22).

Support of PI computations by fMRI grid-like 
representations
Previous fMRI studies established a hexadirectional modulation of 
BOLD activity in the EC as a macroscopic signature of grid cell 
activity (4, 13, 14). We thus analyzed GLRs in our paradigm using a 
multi-voxel pattern approach (see Methods) (14). We focused on 
the posterior-medial EC (pmEC), the putative human homolog of 
the rodent medial EC (11, 14, 28). The analysis is based on the ratio-
nale that the hexadirectionally symmetric firing pattern of grid cells 
results in higher pattern similarity when movement directions are 
60°, 120°, 180°, etc. apart from each other than when they have an 
offset of 30°, 90°, 150°, etc. (Fig. 6A).

We observed a significant hexadirectional symmetry of pattern 
similarity in pmEC (t34 = 2.56, P = 0.015; Fig. 6B). A post hoc test 
revealed that the effect was confined to right pmEC (t34 = 2.98, 
P = 0.005), in accordance with previous studies on GLRs (4, 13). 
GLRs were not driven by a head direction signal: Eliminating move-
ment directions with angular differences of −15° to 15° still resulted 
in a hexadirectional signal (bilateral pmEC: t34 = 2.90, P = 0.006; 
right pmEC: t34 = 3.36, P = 0.002; Fig. 6B). We performed a series of 
control analyses to ensure validity and specificity of the GLRs 
(Fig. 6C and Supplementary Text).

Predictions of PI performance by neural representations of 
spatial features
Last, we aimed at establishing a mechanistic model that could ex-
plain PI performance (Fig. 7). We built an exploratory mixed linear 
model with subtask and incoming distance as within-subject predictors, 
subject as random factor, and the following fMRI-based between-
subject predictors: (i) EC representations of integrated path during 
the incoming phase, (ii) HC representations of goal proximity 
during the incoming phase, (iii) GLRs in pmEC, and (iv) PC/RSC 
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landmark representations (model 6, Table 1). The other potential 
fMRI-based predictors were not included into the model because they 
either caused multicollinearity or did not significantly improve model 
fit (for a detailed explanation of the model buildup, see Methods). 
We allowed interactions of the fMRI-based predictors with subtask 
or incoming distance, but not with the other fMRI-based predictors. 
Post hoc comparisons were Tukey-corrected for multiple compari-
sons (number of subtasks or number of compared quintiles).

First, we found that EC representations of integrated path during 
the incoming phase predicted performance (F = 16.19, P < 0.001). 

This effect was more pronounced at high incoming distances, as 
shown by a significant interaction with incoming distance (F = 5.43, 
P = 0.020): At higher incoming distances (quintiles 2 to 5), EC 
representations of integrated path showed a significant association 
with performance (all z ≥ 3.32, all PTukey < 0.005). This was not the 
case at low incoming distances (quintile 1: z = 1.97, PTukey = 0.221).

Second, while we did not encounter a significant main effect of 
HC representations of goal proximity during the incoming phase 
(F = 1.39, P = 0.247), we found a significant interaction with subtask 
(F = 3.43, P = 0.032). However, post hoc tests revealed no significant 

Fig. 5. fMRI results: Neural determinants of integrated path, goal proximity, and subtask. (A) Representation of integrated path in EC and HC: Deactivation during 
navigation at longer integrated paths during outgoing phase and activation during incoming phase. (B) Representation of goal proximity: Activation for navigation clos-
er to the goal in HC in both trial phases and in EC during the outgoing phase. (C) Subtask dependence of integrated path representations: HC deactivation during navi-
gation at longer integrated paths during the outgoing phase was modulated by subtask. During the incoming phase, we observed a statistical trend for a similar result in 
EC and HC. (D) Significantly higher activity in PC/RSC during the LPI as compared to the PPI subtask. (E) Confirmatory whole-brain analyses: (left) activation of visual areas 
during the BPI as compared to the PPI subtask and (right) higher PC/RSC activity in the LPI than in the PPI subtask. P values are FDR-corrected for the number of contrasts 
and for the number of ROIs in all ROI analyses (A, B, and D). For post hoc comparisons between subtasks in (C), P values are FDR-corrected for number of subtasks. *P < 0.05, 
**P < 0.01, and ***P < 0.001. Error bars (A to D), SEM. Statistical parametric maps in (E) are thresholded at P < 0.05, family-wise error (FWE)–corrected for whole brain (left) 
and small volume–corrected for PC/RSC (middle and right), and clusters are considered significant at P < 0.05, FWE-corrected. FDR, false discovery rate; a.u., arbitrary units. 
See also figs. S4 and S5 and table S5.
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association between this fMRI predictor and performance in any 
subtask (all z ≤ 2.08, all PTukey ≥ 0.109).

Third, the magnitude of GLRs had no main effect on perform
ance (F  =  0.73, P  =  0.398) but showed a significant interaction 
with subtask (F = 7.98, P < 0.001). Post hoc comparisons revealed 
that GLRs predicted performance to a greater extent in PPI than in 
LPI (z = 3.99, PTukey < 0.001). No differences were encountered 
between the other subtask combinations (both z ≤ 2.14, both 
PTukey ≥ 0.082). When analyzed separately, we found that GLRs 
significantly predicted performance in the PPI subtask (z = 2.52, 
PTukey = 0.035), but not in the other subtasks (both z ≤ 0.96, both 
PTukey ≥ 0.711). These results indicate that the grid cell system in pmEC 
supports PI specifically in the absence of supportive spatial cues.

Last, the magnitude of PC/RSC representations of landmarks 
showed no main effect on performance (F = 0.07, P = 0.793), but 
we encountered a significant two-way interaction with subtask 
(F = 6.93, P = 0.001) and a three-way interaction with subtask and 
incoming distance (F = 4.36, P = 0.013). However, PC/RSC rep-

resentations of landmarks predicted performance in none of the 
individual follow-up tests (all z ≤ 1.47, all PTukey ≥ 0.543).

DISCUSSION
Our behavioral results show that APOE 4-carriers perform as well 
as controls as long as they can use supportive spatial information 
from a boundary or a landmark. Their deficit in PI is unmasked, 
however, when potentials for error accumulation increase (i.e., with 
higher PI distance) and/or when no compensatory strategies can be 
used. In these conditions, PI performance relates to EC gray matter 
volume and to the strength of entorhinal GLRs. Supportive spatial 
cues improve performance, presumably via compensatory recruit-
ment of other regions including the PC/RSC.

We propose that changes in grid cell functioning underlie the 
impaired performance of risk carriers during PPI because various 
studies identified grid cells as the main neural substrate for PI 
(16, 19). In our fMRI study, we observed a positive relationship 

Fig. 6. Grid-like representations in pmEC. (A) Left: Schematic depiction of angular differences in 360° space (inner numbers) and in 60° space (outer numbers). We ex-
pected higher pattern similarity for angular differences of mod(,60°) = 0° (rose, where  is the angular difference between two movement directions) as compared to 
angular differences of mod(,60°) = 30° (gray). We expected the same result when excluding pattern similarities of the same heading direction (dark rose). Right: Move-
ment directions of two exemplary fMRI volumes (blue arrows). In the first volume, the subject navigates at an angle of 0° with respect to the reference axis. In the second 
volume, the subject navigates at an angle of 30°. This results in an angular difference of 30° (in 360° and 60° spaces) and thus mod(,60°) = 30° (compare to blue arrows 
on the left). (B) In bilateral and in right pmEC, pattern similarity for angular differences of mod(,60°) = 0° was significantly higher than pattern similarity for angular dif-
ferences of mod(,60°) = 30°, suggesting a hexadirectional symmetry of pattern similarities (dark blue bars). Same result when removing movements with similar heading 
directions in 360° space (light blue bars). (C) Control analyses. Left: No evidence for fourfold, fivefold, sevenfold, or eightfold rotational symmetry of pattern similarity in 
bilateral or right pmEC. Right: No evidence for sixfold rotational symmetry of pattern similarity in alEC, HC, and PC/RSC. Error bars (B and C), SEM. *P < 0.05. mod, modulus; 
dir., direction; pmEC, posterior-medial entorhinal cortex; alEC, anterior-lateral entorhinal cortex; HC, hippocampus.
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between the strength of GLRs and PI performance exclusively in the 
absence of supportive spatial cues that could reduce error accumu-
lation during PI computations (17, 18). This indicates that the 
experimental condition in which risk carriers showed impaired PI 
performance relied most strongly on the grid cell system. Risk 
carriers may thus experience higher error accumulation during PPI 
due to a compromised EC grid cell system.

Furthermore, we found representations of integrated path and 
goal proximity in EC and HC during the outgoing as well as during 
the incoming phase. This result is in line with models suggesting 
that EC grid cells provide the computational basis for representing 
the integrated path (i.e., the distance and direction traveled) (18). A 
complementary model suggests that grid cells enable the computa-

tion of a direct vector to the goal (20, 21). Accordingly, we demon-
strated that risk carriers’ performance is particularly affected by 
high incoming distances and that this is associated with a higher 
dependency on EC volume in APOE 4-carriers.

An environmental boundary or a landmark allowed risk carriers 
to perform as well as controls. This is consistent with a recent study 
showing similar PI performance in risk and control participants in 
rich virtual environments (5). This previous study examined the 
effect of APOE genotype on wayfinding distance and wayfinding 
duration during map-based navigation and on rotation errors during 
PI (“flare accuracy”). A particular strength of this study was the use 
of normative benchmark big data from the Sea Hero Quest (SHQ) 
game that was conducted by more than 27,000 participants worldwide 

Fig. 7. Mechanistic model to predict PI performance. We aimed at predicting PI performance as a function of fMRI-based representations of spatial features in combi-
nation with subtask and incoming distance (model 6). (A) Integrated path representations in EC interacted with incoming distance in predicting PI performance: At 
higher incoming distances, stronger integrated path representations in EC were associated with better performance. (B) Goal proximity representations in HC interacted 
with subtask in predicting PI performance. In none of the subtasks was the prediction significant by itself. (C) GLRs in pmEC interacted with subtask in predicting PI per-
formance: Only in PPI, higher GLRs in pmEC were associated with better performance. (D) Landmark representations in PC/RSC interacted with subtask and incoming 
distance in predicting PI performance. In none of the individual subtask by incoming distance combinations was the prediction significant by itself. As the model con-
tained two continuous predictors, one of them (incoming distance) was discretized into quintiles for post hoc tests and for graphical depiction; only quintiles 1 and 5 are 
depicted (A and D). Y axes show parameter estimates for performance; shaded areas, SEM.
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(5, 29). The authors demonstrated that APOE 4-carriers exhibited 
larger wayfinding distances than noncarriers, whereas wayfind-
ing duration and flare accuracy were similar (5). Given that wayfin-
ding distance may particularly rely on grid cell–based navigational 
processes, the study is in line with the notion that grid cell dysfunc-
tion may constitute a sensitive biomarker for AD risk, consistent 
with the current study.

The new results presented here are complementary to this earlier 
study in several respects: First, effects of APOE 4 were observed 
during map-based wayfinding in the study by Coughlan and col-
leagues, whereas the current study found a detrimental effect of 
APOE 4 on PPI. Thus, different navigational processes were 
analyzed. Second, the current study applied an adapted version of 
the behavioral paradigm during fMRI scanning, which allowed 
us to measure the role of GLRs in our task and also to assess the 
recruitment of other navigational systems. In addition, structural 
neuroimaging allowed us to relate the behavioral results to EC vol-
umes. We could thus identify a putative neural correlate for the PI 
deficit found in our study, i.e., GLRs in EC. In the future, it will be 
pivotal to directly compare the neurocognitive processes during the 
different experimental tasks and to further disentangle the effects of 
APOE genotype and AD pathology on different subcomponents of 
navigational behavior.

Using fMRI, we demonstrated increased PC/RSC activity in 
response to an environmental landmark, consistent with previous 
studies (22). The PC/RSC provides a neural basis for viewpoint-
dependent representations of local place and direction (21, 22), 
which may be at the core of compensatory strategies used by risk 
carriers. We propose that risk carriers recruited the PC/RSC in the 
landmark condition to a greater extent than controls to counteract 
error accumulation during PI and to compensate for a reduced 
reliability of GLRs, thus anchoring the cognitive map (21, 30). In 
support of this idea, risk carriers showed a stronger relationship be-
tween goal-to-landmark distance and performance, and navigated 
in closer proximity to the landmark during the incoming phase. 
However, future fMRI studies with genotyped participants are re-
quired to corroborate this idea.

In the BPI subtask, the relationship between performance and 
goal-to-boundary distance was not modulated by genotype, and 
risk carriers did not navigate closer to the boundary as compared to 
control participants. This null finding differs from previous find-
ings showing preferred navigation of risk carriers along environ-
mental boundaries (4, 5). This discrepancy may be explained by the 
specific layout of our BPI subtask: The boundary was at consider-
able distance to potential goal locations, and navigating toward the 
boundary led to a linear decrease in navigation speed. The exact 
effects of environmental boundaries on PI performance may be 
scrutinized in future studies by comparing different types of bound-
aries (squared and circular) and environmental layouts (distal and/
or proximal landmarks).

AD is defined neuropathologically by two hallmarks: neuro-
fibrillary tangles of hyperphosphorylated tau proteins and -amyloid 
plaques (10, 31). While neurofibrillary tangles show a sequential 
spreading from EC to other limbic regions and eventually to multiple 
areas of the neocortex (32), amyloid deposition starts in neocortical 
areas, followed by a progression toward allocortical brain regions, 
subcortical structures, the brainstem, and the cerebellum (31). The 
accumulation of MTL tau seems to precede neocortical amyloid 
deposition in cognitively unimpaired older adults (33), although 

the exact sequence between pathologies and the interpretation to 
provide when only one pathology is observed is still highly debated. 
It is generally acknowledged that tau pathology is more closely 
related to cognitive deficits in preclinical and clinical stages of AD 
(33–35). Our and related previous findings in cognitively un-
impaired samples at genetic risk for AD showed impaired perfor-
mance (5, 36) and/or altered strategies (4) in navigational tasks that 
are presumably MTL dependent, whereas performance in naviga-
tional tasks that depend primarily on regions outside of the MTL 
(such as landmark-oriented navigation) was not affected. This per-
formance deficit may thus reflect initial occurrence of AD-related 
neurofibrillary tangles, rather than early amyloid deposition. How-
ever, positron emission tomography (PET) studies of amyloid and 
tau will be needed to determine the respective contributions of both 
AD pathologies, and their topographies, to the observed pattern of 
behavioral performance.

Compensatory strategies of EC-dependent behavioral deficits 
in APOE 4-carriers may be relevant for the progression of AD 
pathology: It has been suggested that neural hyperactivity associated 
with these strategies leads to a progressive deterioration in structural 
integrity of relevant brain areas (37), perhaps by increasing -amyloid 
(38) and/or tau deposition (34). Thus, potential compensatory 
strategies in risk carriers associated with higher activity in specific 
brain areas may contribute to AD progression (4). Consequently, at 
later stages of AD, patients should no longer be able to rely on com-
pensatory mechanisms (39), leading to worse performance irre-
spective of whether supportive spatial cues are provided. In a recent 
study, mild cognitive impairment patients with positive AD biomarkers 
showed reduced PI performance irrespective of the availability of 
supportive spatial cues (36). At this stage, neural hyperactivity may 
even directly exert detrimental effects on behavior (40). Preventing 
hyperactivity might thus be a promising therapeutic strategy, possi-
bly improving interneuron dysfunction and counteracting network 
abnormalities (41).

Several limitations of the current study should be addressed. 
First, our cohort may not be representative of the entire population 
as the participants were relatively highly educated (average years of 
education, 13.37 years). Previous studies showed that higher levels 
of education are associated with a reduced risk of dementia (42). 
Specifically, human PET data indicate a lower impact of tau pathol-
ogy on neuronal function in AD patients with higher education, 
suggesting that the level of education might support resilience 
mechanisms (43) [“cognitive reserve hypothesis”; see also (42)]. We 
therefore hypothesize that the APOE effects on PI performance we 
report might actually be more severe in the overall population—a 
question that should be investigated in future studies.

Another limitation of the current study is that we conducted the 
fMRI study to reveal the neural mechanisms underlying our specific 
PI task in a group of participants without any particular impairments 
due to AD or aging—i.e., in young, healthy participants. Using this 
approach, we identified different neural processes related to our task. 
We hypothesize that these physiological neural processes are altered 
or impaired by age- and/or disease-related factors [e.g., (4, 16, 44)]. 
Future studies may thus examine the influence of APOE 4 and age 
on the physiological neural processes of our PI task.

Last, based on the findings of the current study, we cannot con-
clude unambiguously that the detrimental effect of APOE 4 on PPI 
performance results from AD-related pathology. Instead, the selec-
tive impairment in PPI and the increased use of landmark-related 
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navigation strategies might constitute an APOE 4–specific variant 
in neurocognitive development evident even in the healthy state (45). 
Neuropathological studies showed increased AD-related neuro-
fibrillary changes even in young APOE 4-carriers [mean age, 38 years; 
age range, 22 to 46 years; (8)], which may speak in favor of the 
interpretation that impaired PI performance is a result of very early 
AD-related changes. Nevertheless, future studies are clearly needed 
to test for direct relationships between impaired PI performance 
and signs of AD neuropathology, e.g., using cerebrospinal fluid bio-
markers and/or PET imaging.

CONCLUSION
EC-dependent functioning may prove particularly useful for predict-
ing AD because of its early affection by AD-related neuropathological 
changes (10). Distinct navigational strategies may deteriorate at dif-
ferent preclinical and clinical stages of AD, and PPI may capture the 
behavioral manifestation of earliest neuropathological changes re-
lated to preclinical AD development.

METHODS
Participants
We recruited healthy participants at five European sites including 
Germany (two sites), Spain, Belgium, and Italy (table S1) to (i) ex-
amine the influence of APOE genotype on PI performance (APOE 
sample), (ii) elucidate the fMRI signatures of PI in our task (fMRI 
sample), and (iii) investigate associations between brain structure 
and PI performance (sMRI sample). The study was performed in 
accordance with the Declaration of Helsinki and was approved by 
the respective institutional review boards at all sites. All participants 
gave their written informed consent.
APOE sample
Four groups of participants (total, N = 318) were recruited at four 
different sites: Germany (“APOE sample 1,” n = 112; IfADo—Leibniz 
Research Centre for Working Environment and Human Factors at 
the Technical University Dortmund, Dortmund, Germany), Spain 
(“APOE sample 2,” n = 114; Pablo de Olavide University, Seville, Spain), 
Italy (“APOE sample 3,” n = 68; University of Parma, Parma, Italy), 
and Belgium (“APOE sample 4,” n = 24; Cliniques Universitaires Saint-
Luc, Brussels, Belgium). Fifty-one participants were excluded because 
of genotypes other than 3/4 or 3/3 (n = 46), prior familiarity with 
the task (n = 1), or technical reasons (n = 4), resulting in a final sample 
of n = 267 participants (for demographics, see tables S1 and S2; fig. S1).
sMRI sample
The sMRI sample consisted of a subset of participants from APOE 
sample 2 for which sMRI scans were available (n = 99; for demo-
graphics, see tables S1 and S3; fig. S1).
fMRI sample
To elucidate the fMRI signatures of PI in our task, we recruited 
young healthy participants (n = 35; for demographics, see table S1) 
at Ruhr University Bochum, Bochum, Germany.
APOE genotyping
Four groups of participants (APOE samples 1 to 4) were analyzed 
for the APOE polymorphisms rs429358, a [C/T] substitution on 
chromosome 19q13.32 of the sequence GCTGGGCGCGGACAT-
GGAGGACGTG[C/T]GCGGCCGCCTGGTGCAGTACCGCGG, and 
rs7412, a [C/T] substitution of the sequence CCGCGATGCCGAT-
GACCTGCAGAAG[C/T]GCCTGGCAGTGTACCAGGCCGGGGC.

On the basis of the two single-nucleotide polymorphisms (SNPs), 
participants were assigned to one of the three alleles 2, 3, or 4.

For APOE sample 1, venous blood was taken and DNA was iso-
lated using the QIAamp DNA Blood Maxi Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s protocol. DNA concen-
trations were determined using a NanoDrop ND-1000 UV/Vis 
spectrophotometer (PEQLAB Biotechnologie GMBH, Erlangen, 
Germany). Genotyping was performed on the ABI7500 Sequence 
Detection System with the use of TaqMan assays (assay ID: 
C_3084793_20 for rs429358 and assay ID: C_904973_10 for rs7412; 
Applied Biosystems, Darmstadt, Germany). Analysis of data was 
performed according to the manufacturer’s instructions (Applied 
Biosystems, 7300/7500/7500, Fast Real-Time PCR System Allelic 
Discrimination Getting Started Guide).

For APOE sample 2, genomic DNA was isolated from blood using 
a standard salting-out protocol. DNA concentration and purity were 
determined by UV spectrophotometric measurements (Quawell, 
Q3000 UV). Genotyping was performed by real-time polymerase 
chain reaction (PCR) (Step-One Plus, Applied Biosystems) using 
predesigned TaqMan SNP genotyping assays (assay ID: C_3084793_20 
for rs429358 and assay ID: C_904973_10 for rs7412; Applied Bio-
systems, Darmstadt, Germany).

For APOE sample 3, genomic DNA was extracted from buccal 
brushes using the Gentra Puregene Buccal Cell Kit (Qiagen, Valencia, 
CA, USA). The APOE SNPs were genotyped using the ABI PRISM 
7700 Sequence Detector (assay ID: C_3084793_20 for rs429358 and 
assay ID: C_904973_10 for rs7412; Thermo Fisher Scientific, MA, 
USA) with a TaqMan 5′-allele discrimination Assay-By-Design 
method (Thermo Fisher Scientific, MA, USA). PCR was performed 
according to the manufacturer’s instructions.

For APOE sample 4, DNA was extracted from blood and analysis 
of APOE polymorphisms was performed by means of restriction enzyme 
isoform genotyping. We used predesigned TaqMan SNP genotyping 
assays (assay ID: C_3084793_20 for rs429358 and assay ID: C_904973_10 
for rs7412; Applied Biosystems, Darmstadt, Germany).

Participants were not genetically preselected. For analyses, we 
focused on two genetic subgroups: APOE 3/3-carriers [“control 
group”; common genetic risk for AD (3); n = 202] and APOE 
3/4-carriers [“risk group”; increased genetic risk for AD (3); 
n = 65]. The prevalence of risk carriers (defined as 3/4 genotypes) 
in our APOE sample is 20.83% (3/3, 64.74%; 3/4, 20.83%; 
2/3, 10.58%; 2/4, 1.60%; 4/4, 1.60%; 2/2, 0.64%). However, 
please note that the prevalence of the APOE 4 allele in our sam-
ple is 12.82% (3 allele, 80.45%; 4 allele, 12.82%; 2 allele, 6.73%). 
This relative allele frequency is 50% lower than the prevalence of 
all 4 genotypes, because the allele frequency is standardized by the 
total number of alleles (Nallele = 624) rather than by the number 
of subjects/genotypes (Ngenotype = 312). The allele frequency in 
our sample thus matches previous results with estimates of around 
14% (46).

Risk group and control group did not differ in terms of demo-
graphic characteristics (table S2 for the APOE sample and table S3 
for the sMRI sample). Participants from other genetic subgroups 
were excluded as in previous studies (2/2, n = 2; 2/3, n = 33; 
2/4, n = 5; 4/4, n = 5) (4). Participants and experimenters were 
blinded toward genotypes. Sample size was based on previous studies, 
suggesting >50 participants in the smaller genetic subgroup (7). All 
participants reported normal or corrected-to-normal vision and no 
history of neurological or psychiatric diseases.
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Experimental task
Participants performed a PI task (the Apple Game) in a virtual 
environment implemented via Unreal Engine (Epic Games, version 
4.11). The environment consisted of an endless grassy plane with a 
blue sky rendered at infinity. Trials were divided into three phases. 
During the start phase, participants navigated to a goal location, 
which was marked by a basket (Fig. 1, B and C). Participants were 
instructed to remember this location. When they had reached the 
goal location, the basket disappeared and a tree appeared in a differ-
ent location (outgoing phase). Participants walked toward the tree, 
checked if it had an apple, and walked to the tree to make it dis-
appear. If the tree did not have an apple, another tree appeared. 
Trials contained between one and five trees to systematically vary PI 
difficulty, corresponding to a variation of outgoing distance [Fig. 1C; 
see also the “Behavioral analyses” section; for similar tasks, see 
(16, 36)]. The final tree was marked by a red apple (retrieval loca-
tion), indicating that the participants had to navigate back to the 
goal location (to place the apple into the basket; incoming phase). 
After pressing a button to indicate that this was the presumed location 
of the basket (“response location”), participants received feedback 
via zero to three stars, depending on the Euclidean distance between 
the response location and the correct goal location (drop error; 
Fig. 1D; <1600 vm for three stars, <3200 vm for two stars, and <6400 vm 
for one star; fig. S1). All phases were self-paced, and only the incoming 
phase had a time limit of 60 s before the next trial started (this time 
limit was never reached by any participant). Locations of baskets and 
trees were equally distributed across an (invisible) grid of 8 × 8 squares 
(bin edge length, 800 vm) such that each participant visited all squares 
once in each environmental condition (fig. S1).

Virtual meters are the metric to quantify distances in the virtual 
environment as given by Unreal Engine. The diameter of the arena 
was ~13,576 vm (fig. S1A). Therefore, the highest incoming distance 
of ~7920 vm corresponded to ~58% of the arena diameter. Virtual 
meters cannot be directly converted into real-world meters, but—
assuming that the virtual character’s eye height of 310 vm corresponds 
to ~1.65 real-world meters—it can be inferred that the virtual arena had 
a size of ~72 real-world meters.

PI performance was tested in three environmental conditions that 
differed with regard to the presence or absence of supportive spatial 
cues. In the PPI condition, the virtual environment did not contain 
any landmarks or boundaries, and participants purely relied on visual 
flow to perform PI (Fig. 1A). In the BPI condition, a circular stonewall 
with a height of 2050 vm surrounded the environment at a radius of 
6788 vm (Fig. 1A, middle; for location and radius, see also fig. S1). 
In the LPI condition, a lighthouse with a height of 1300 vm was present 
at x = 1600 vm and y = 800 vm, serving as an intramaze landmark 
(Fig. 1A; for the location, see also fig. S1). No distal cues outside the 
boundary were present, which is different from previous studies examining 
the influence of APOE on navigational behavior (4, 5). We chose this 
design to specifically assess the effects of the boundary and the landmark.

Participants navigated the virtual environments using a joystick 
(behavioral experiment, Trust GXT 555 Predator; fMRI experiment, 
MR-compatible joystick from Nata Technologies, Coquitlam, 
Canada), allowing them to move forward, turn left, or turn right. 
Moving backward was not possible so that movement direction was 
equivalent with heading direction. In each subtask, participants’ 
speed was attenuated when their distance from the center of the 
arena was larger than 5657 vm and linearly decreased to zero at 
6788 vm, ensuring a constant movement radius in subtasks with 

and without a visible boundary (fig. S1). In this “speed reduction zone,” 
participants could navigate at full speed when heading toward the 
center of the arena. The position of the participant was logged every 
200 ms, which allowed us to extract movement periods, movement 
speed, and movement direction.
Behavioral experiment
The paradigm was subdivided into subtasks of 16 trials each. Sub-
tasks varied with respect to the layout of the virtual environment. 
Participants started the first trial of each subtask in the center of the 
virtual environment (x = 0 vm, y = 0 vm). The outgoing phase of 
each subtask contained either one tree (three trials), two trees (three 
trials), three trees (four trials), four trees (three trials), or five trees 
(three trials) in randomized order (including the tree marked by an 
apple). This trial procedure allowed a perfect balancing of locations 
during the experiment so that each participant visited all 64 squares 
once in each subtask (fig. S1). Before the beginning of the task, all 
participants completed eight trials in the PPI condition to practice 
the paradigm. As we encountered systematic within-subject effects 
of fixed trial and location sequences in a subgroup of participants 
(for the exact number of participants, refer to table S2), we fully 
randomized trials and locations for later participants. The random-
ization neither showed a main effect on performance (F = 0.74, 
P = 0.477) nor did any of the results change when we added ran-
domization version as a covariate to the model (subtask: F = 799.09, 
P < 0.001; incoming distance: F = 4139.47, P < 0.001; “APOE × sub-
task”: F = 10.89, P < 0.001; performance difference in PPI between 
risk carriers and controls: z = 2.08, PTukey = 0.037). Participants in 
Parma, Seville, and 20 participants in Brussels completed a long 
version of the paradigm with six subtasks (2 × PPI, 2 × BPI, and 2 × 
LPI; Fig. 1E), with the order of the subtasks being pseudorandom-
ized such that the same subtask would not follow each other and the 
three different subtasks would be equally distributed across the ex-
perimental halves. This resulted in a total of 96 experimental trials. 
Participants could take breaks between the subtasks. The experi-
ment lasted 107.44 ± 33.15 min [mean ± SD)] in total. Participants 
in Dortmund and four participants in Brussels completed a shorter 
version of the paradigm with three subtasks (1 × PPI, 1 × BPI, and 
1 × LPI; Fig. 1E) with the order of the subtasks being randomized, 
resulting in 48 experimental trials. Including breaks between the 
subtasks and practice trials, the short version of the experiment lasted 
52.83 ± 12.08 min (mean ± SD) in total.
fMRI experiment
The fMRI experiment consisted of a practice run, which was con-
ducted during the structural scan (6 min), and two functional runs. 
The practice run comprised a maximum of nine trials (three trials 
in each condition) and ended when the structural scan was over. 
Each functional run had a duration of 22.32 ± 3.18 min (mean ± SD), 
which corresponds to 536 ± 76 (mean ± SD) fMRI volumes. The 
duration of the functional runs varied between participants, be-
cause the entire task was self-paced. In between runs, participants 
could take short breaks. Each run consisted of six blocks containing 
four trials of each of the three environmental conditions (Fig. 1F), 
resulting in 16 trials per condition and thus 48 trials in total across 
the experiment. The order of the blocks was pseudorandomized 
such that the same subtask would not follow each other and that the 
three different subtasks would be equally distributed across the two 
experimental runs. Before every new trial, participants viewed a 
fixation crosshair with a variable duration of 5 to 7.5 s (randomly 
distributed).
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Data acquisition
Data were acquired according to a standardized protocol (with regard 
to experimental setup, instructions, behavior of the investigator, 
and breaks), ensuring comparability across the five recording sites.
Behavioral data acquisition (APOE sample)
The paradigm was presented on laptops with a screen diagonal of 
45 cm, a resolution of 1920 × 1080 pixels, and a frame rate of 
60 frames/s. We attached the joystick to the table by means of a 
custom-made frame (identical for all sites), which also served as an 
armrest, and placed the laptop at a distance of 50 cm in front of the 
participant.
MRI data acquisition (sMRI sample)
Structural brain images were acquired at the Neuroimaging Service 
of the Pablo de Olavide University (Seville, Spain) using a 3T Philips 
Ingenia CX MRI scanner equipped with a 32-channel receiver head 
coil (Philips, Best, The Netherlands). Head motion was minimized by 
placing foam padding around the subject’s head. One high-resolution 
three-dimensional (3D) T1-weighted magnetization-prepared rapid 
gradient echo (MP-RAGE) sequence was acquired in the sagittal 
plane. Acquisition parameters were empirically optimized to en-
hance the gray/white matter (WM) contrast with repetition time 
(TR)/echo time (TE) = 2600/4.7 ms, flip angle (FA) = 9°, voxel res-
olution = 0.65 mm isotropic, acquisition matrix = 384 mm × 384 mm, 
resulting in 282 contiguous slices without gap between adjacent 
slices, acceleration factor (SENSE) = 1.7, and field of view (FOV) = 
250 mm × 250 mm × 183 mm.
fMRI data acquisition (fMRI sample)
The fMRI recordings were conducted at the Bergmannsheil hospital in 
Bochum using a 3 T Philips Achieva scanner (Best, The Netherlands) 
with a 32-channel head coil. High-resolution whole-brain structural 
brain scans of participants were acquired using a T1-weighted se-
quence at 1-mm isotropic resolution, an FOV of 240 mm × 240 mm, 
and 220 transversally oriented slices during a total acquisition time 
(TA) of 6 min 2 s. Blood oxygenation level–dependent (BOLD) 
contrast images were measured with a T2*-weighted gradient echo 
EPI sequence with 2.5-mm isotropic resolution, TR = 2500 ms, 
TE = 30 ms, FA = 90°, FOV = 96 mm × 96 mm, 46 transversal slices 
in interleaved order without slice gap, and TA = 22.32 ± 3.18 min 
(mean ± SD), corresponding to 536 ± 76 volumes (mean ± SD). We 
discarded the first five images of each session to allow signal steady-
state transition. Participants viewed the virtual environment via 
MR-compatible liquid crystal display (LCD) goggles (VisuaStim 
Digital, Resonance Technology Inc., Northridge, CA, USA) with a 
resolution of 800 × 600 pixels, and they navigated the virtual envi-
ronment by means of an MR-compatible joystick.

Data analysis
We extracted behavioral data from logfiles using MATLAB (2018a, 
The MathWorks Inc., Massachusetts) including the Parallel Com-
puting Toolbox (v6.12) and the CircStat Toolbox (47). ROIs were 
created using FreeSurfer (v6.0.0). We used SPM12 (www.fil.ion.ucl.
ac.uk/spm) for all fMRI analyses. Statistics were done in R (48) (3.5.0) 
using the lme4 (49) (v1.1-17) and emmeans (40) (v1.2.2) packages.
Behavioral analyses
We determined three different performance measures from the be-
havioral logfiles (Fig. 1D): drop error, “distance error”, and “rota-
tion error.” The drop error was defined as the Euclidean distance 
between the goal location and the response location. We computed 
the distance error as the absolute difference between two distance 

measures: distance error = Dcorrect − Dresponse, where Dcorrect is the 
distance between the retrieval and the goal location (i.e., the dis-
tance of the correct incoming path) and Dresponse is the distance be-
tween the retrieval and the response location (i.e., the distance of 
the incoming path chosen by the participant). Rotation error was 
computed correspondingly as the absolute difference between two 
angular measures: rotation error = Rcorrect − Rresponse, where Rcorrect 
is the heading direction of the correct incoming path and Rresponse is 
the heading direction of the response path. Only for visualization 
and enhanced readability, we converted the error measures to per-
formance measures of participant i (performancei) using a linear 
transformation: performancei = [max(error) – errori + min(error)]/
max(error) × 1000, where max(error) and min(error) correspond to 
the maximum and minimum error across all participants, respec-
tively, and errori corresponds to the error in participant i. The 
formula simply reverses the errors and maps them into the range 
between 0 and 1000. Note that the linear transformation does not 
affect the statistical results. Thus, “performance” refers to the drop error, 
“performance based on distance error” refers to the distance error, 
and “performance based on rotation error” refers to the rotation error.

To analyze performance as a function of path distance, we calcu-
lated incoming and outgoing distance (Fig. 1C): Outgoing distance 
was determined as the cumulated path distance during the outgoing 
phase, i.e., we summed the Euclidean distances between “goal,” “tree 
without apple,” and “retrieval” locations. Incoming distance was 
defined as the Euclidean distance between the retrieval location and 
the goal location. Outgoing and incoming distances reflect different 
subcomponents of PI (keeping track of the traveled path with regard 
to the goal location and computing a straight line in relation to the 
goal location, respectively) but are putatively both subject to cumu-
lative error accumulation (18).

The precision of PI processes can be improved if sensory infor-
mation is available to recalibrate the ideothetic coding process (17). 
We thus investigated the influence of spatial cue distance, i.e., the 
distance between the goal location and the boundary (“goal-to-
boundary” distance) or the landmark (“goal-to-landmark” dis-
tance) on performance.

Last, we examined navigational strategy, irrespective of perfor-
mance. To this end, we computed the mean Euclidean distance 
from the boundary or from the landmark across all time points of 
the incoming phase (this was not computed during the outgoing 
phase, because navigation during this period was determined by the 
consecutive trees).
Analysis of everyday life navigational strategies in our samples
We acquired the Santa Barbara Sense of Direction (SBSOD) ques-
tionnaire (51), which is a self-report measure of navigational abilities 
in all but one participants of the APOE sample (n = 266). First, to 
reveal if APOE groups differed with respect to self-reported naviga-
tional abilities, we calculated SBSOD mean scores and compared 
them between risk carriers and controls by means of a t test.

Second, to investigate the relationship between APOE genotype 
and navigational strategies, we tested for differences in specific nav-
igational strategy profiles. Specifically, we checked for the propor-
tion of “mappers” and “egocentric navigators” in the APOE groups. 
We defined mappers based on items 7, 9, 13, and 15 in SBSOD:

1) Item 7: I enjoy reading maps.
2) Item 9: I am very good at reading maps.
3) Item 13: I usually let someone else do the navigational plan-

ning for long trips. (recoded)
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4) Item 15: I don’t have a good “mental map” of my environ-
ment. (recoded)

We defined egocentric navigators based on items 4, 6, and 
14 in SBSOD:

1) Item 4: My “sense of direction” is very good.
2) Item 6: I very easily get lost in a new city. (recoded)
3) Item 14: I can usually remember a new route after I have 

traveled it only once.
The mean score of those three items was used to define ego-

centric navigators. Mappers and egocentric navigators were then 
classified on the basis of a median split.
Statistical analysis
To assess potential demographic differences between risk carriers 
and controls, we performed two-tailed t tests, Wilcoxon tests, and 
chi-square tests. To test for significant relationships between fMRI 
representations, we performed bivariate Pearson or Spearman cor-
relations. To disentangle the various factors driving PI performance 
in the different subtasks of our paradigm, we implemented a mixed 
linear model using the lme4 package in R (48, 49). We were both 
interested in fixed effects of predictors varying within subjects and 
in effects of predictors varying between subjects.

As within-subject predictors, we included subtask (i.e., PPI, LPI, 
and BPI) and two different types of distance predictors: a path dis-
tance predictor that could be quantified in all three subtasks (i.e., 
outgoing distance or incoming distance), and a spatial cue distance 
predictor that was only defined in the corresponding subtask (goal-
to-boundary distance in the BPI subtask and goal-to-landmark dis-
tance in the LPI subtask). In addition, we considered between-subject 
effects: genotype (i.e., APOE 4-carriers and APOE 4-noncarriers), 
which was defined for all subjects in the APOE sample; volume 
in EC, HC, or PC/RSC, which was only defined for subjects with 
available sMRI data (sMRI sample); and representations of inte-
grated path, goal proximity, boundary, landmark, and GLRs, which 
were only defined for subjects with available fMRI data (fMRI 
sample).

Continuous variables were centered on the grand mean (between-
subject predictors) or on the subject mean (within-subject predictors). 
We included age and sex as covariates to control for main effects 
and interactions on subtask, genotype, and gray matter volume. Site 
and subject were included as random factors. We tested separate 
models for each outcome variable (performance, performance 
based on distance error, and performance based on rotation error). 
Because it is most appropriate for model building and preferable in 
terms of power (52), we always used type II sum of squares (SS) to 
test fixed effects. For post hoc pairwise comparisons, we used 
Tukey-adjusted Fisher’s tests as implemented in the emmeans 
package (50). All statistical tests were two-tailed at an alpha level of 
 < 0.05. We did not report regression coefficients and degrees of 
freedom, as both are not intuitively interpretable in mixed linear 
models of high complexity.

We reported all significant main effects and interactions and 
nonsignificant effects, which were of interest for our hypotheses. 
Thus, effects that are not reported in the results section were not 
significant. We did not report significant interactions with covariates 
(but see fig. S2).

All mixed linear models, except model 6, were built in a hypothesis-
driven way (see Table 1 for an overview of all models): Models 1a 
and 1b were built to test for effects of subtask, genotype, and the two 
path distance regressors on performance. We used separate models 

for the two path distance predictors (“a,” outgoing distance; “b,” 
incoming distance), because they were positively correlated and 
would have caused multicollinearity. However, to scrutinize whether 
the two predictors showed significantly different interactions with 
genotype, we built model 1c. This model contained one regressor 
that accounted for the effects of the path distance predictors irre-
spective of the type of path distance and a binary regressor that 
accounted for the type of path distance (0, outgoing distance; 1, in-
coming distance).

Models 2a and 2b served to analyze the effects of spatial cue dis-
tance, i.e., the subtask-specific measures of the distance between the 
goal and either the landmark (LPI subtask) or the boundary (BPI 
subtask). In models 2a and 2b, we analyzed the effects of genotype 
and goal-to-boundary or goal-to-landmark distance on performance 
in the respective subtasks.

Models 2c and 2d were the only models in which we did not test 
for factors influencing PI performance but tested whether APOE 
genotype predicted whether subjects navigated closer to the bound-
ary (BPI subtask) or the landmark (LPI subtask), similar to previous 
studies (4, 5). Thus, we did not use performance as criterion (i.e., 
dependent variable) but distance-to-boundary (BPI subtask) or 
distance-to-landmark (LPI subtask), respectively. These distance mea-
sures were obtained by averaging the Euclidean distances across all 
time points of the incoming phase of each trial of the respective 
subtasks.

Models 3 to 5 tested for effects of EC, HC, and PC/RSC volumes 
on PI performance, respectively. These between-subject variables 
were included in addition to genotype, subtask, and one of the path 
distance measures. We corrected for multiple comparisons (i.e., the 
number of ROIs tested) using Bonferroni correction.

We conducted additional analyses to gain a more in-depth and 
comprehensive understanding of how our genotype effects might 
vary between different age groups. In detail, we split the sample into 
two age groups in a data-driven way using MATLAB’s kmeans clus-
tering algorithm. The resulting cutoff was at 42 years, which divided 
the overall sample into a younger group (n = 163; mean age ± SD, 
24.32 ± 4.87) and an older group (n = 104; mean age ± SD, 
58.71 ± 7.75).

The sMRI sample was split up in accordance with the gap in the 
age histogram (young group: ≤28 years, n = 48; mean age ± SD, 
22.42 ± 2.28; older group: ≥53 years, n = 51; mean age ± SD, 
3.22 ± 5.42; fig. S1C). We performed the analyses of models 1 to 3 in 
the two age groups.

Last, model 6 served to predict performance by means of incom-
ing distance, subtask, and different fMRI representations. As we did 
not have specific hypotheses about the predictors, this model was 
built in an exploratory way with the restrictions that overfitting and 
multicollinearity had to be avoided. The following fMRI represen-
tations were considered as model predictors because of significant 
effects in previous analyses (Figs. 5 and 6):

1) GLRs in bilateral pmEC.
2) Representations of integrated path during outgoing phase in EC.
3) Representations of integrated path during incoming phase 

in EC.
4) Representations of integrated path during outgoing phase in HC.
5) Representations of integrated path during incoming phase 

in HC.
6) Representations of goal proximity during outgoing phase in EC.
7) Representations of goal proximity during outgoing phase in HC.
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8) Representations of goal proximity during incoming phase in HC.
9) Landmark representations in PC/RSC.
We included (1) in the model as it has been suggested that the 

grid cell system is particularly involved in PI (11). We included (3) 
in the model because it was significantly correlated with mean drop 
error across participants (r34 = −0.541, P = 0.001). Because (2), 
(5), and (7) were correlated with (1) (r34 = 0.50, P = 0.002), (1) 
(34 = −0.38, P = 0.024), and (3) (r34 = −0.341, P = 0.045), respectively, 
they were excluded to avoid multicollinearity. Consequently, we 
started the model buildup using predictors (1), (3), (4), (6), (8), and 
(9). These predictors were not correlated (all r34 or 34 ≤ 0.32, all 
P ≥ 0.061). We allowed interactions between the fMRI representa-
tions and incoming for distance and subtask, but not for interactions 
between the fMRI representations. In the next step, we aimed at 
excluding predictors from the model that were not relevant for pre-
dicting PI performance to build a parsimonious model (49): We 
started selecting predictors by applying an arbitrary significance 
threshold of  = 0.1, which resulted in removing (4) and (6). We 
proceeded with the following procedure: We started with the 
highest-order interaction term and removed it if it was not sig-
nificant at  = 0.05. We calculated a new model and successively 
continued removing lower order terms (as long as they were not 
part of a higher-order interaction) until there was no nonsignificant 
term that could be removed. This resulted in a final model includ-
ing subtask, incoming distance, and (1), (3), (8), (9), as well as 
their interactions with subtask and incoming distance as predictors 
(model 6).
Creation of ROI masks and sMRI analysis
Anatomical ROIs were created using a semiautomatic approach as 
implemented in FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). 
Briefly, sMRIs were processed using the analysis pipeline of FreeSurfer 
v6.0 that involves intensity normalization, registration to Talairach 
space, skull stripping, WM segmentation, tessellation of the WM 
boundary, and automatic correction of topological defects (53). Pial 
surface misplacements and erroneous WM segmentation were 
manually corrected on a slice-by-slice basis to enhance the reliability 
of cortical thickness and hippocampal volume measurements. Seg-
mented brain images were parcellated into cortical and subcortical 
regions (27, 54). This allowed us to obtain volume measurements of 
HC and EC. For the PC/RSC ROI, we used the posterior-ventral part of 
the cingulate gyrus derived from the Destrieux atlas [following (26), 
which used this ROI as an approximation for RSC].

Human EC contains structurally and functionally distinct sub-
parts (28). Therefore, we subdivided the EC using a template of 
anterior-lateral EC (alEC) and pmEC based on functional connec-
tivity with these subregions, which represent the human homolog of 
rodent lateral and medial EC (28), respectively. To obtain subject-
specific masks, the template was mapped from Montreal Neurolog-
ical Institute (MNI) space into individual subject’s native space. To 
ensure that only voxels located in gray matter were analyzed, the 
ROI masks were thresholded and intersected with a gray matter 
mask based on FreeSurfer’s cortical parcellation. Each mask was 
manually inspected to ensure anatomical correctness.

To perform fMRI ROI analyses, ROIs were coregistered to the 
mean functional image of the respective participant so that all ROI 
analyses were performed in native space. For the sMRI analysis, we 
calculated relative gray matter volume by dividing the volume of 
the ROI by the whole-brain volume of the respective participant 
(FreeSurfer variable: “BrainSegVolNotVent”).

fMRI analysis
Preprocessing. Preprocessing of fMRI data was performed using 
SPM12 and included slice time correction and spatial realignment. 
For the whole-brain analysis, we normalized fMRI scans to MNI 
space using parameters from the normalization procedure of the 
segmented structural T1 image. Spatial smoothing with a 5-mm 
isotropic Gaussian kernel was applied to the normalized fMRI data 
and the fMRI data in native space. Normalized functional images 
were used to perform whole-brain analyses, while functional images 
remained in native space for the ROI analyses.
General linear models. Functional images were analyzed via two 
separate GLMs.

In the PI model (fig. S4), we used four different regressors to 
model the start phase, the outgoing phase, the incoming phase, and 
time periods of no movement, separately for each of the three subtasks 
and each of the two runs (24 regressors). Time periods of no movement 
were defined as those time periods when movement speed was at zero 
or minimally above zero (<1 percentile of the subject-specific move-
ment speeds). To include parametric regressors for the moment-to-
moment changes in integrated path and goal distance (see below), the 
regressors for outgoing phase and incoming phase had separate onsets 
at each movement time point (every 200 ms) and a duration of zero.

We hypothesized that regions involved in PI would represent the 
integrated path and/or the goal proximity of the current location. 
We further hypothesized that this representation should be more 
relevant, and thus more pronounced, when no supportive spatial 
cues were available (i.e., in the PPI subtask). To test this, we included 
one of two parametric modulators during the movement periods of 
the outgoing and incoming phases: integrated path (i.e., the cumu-
lative distance that has been traveled at each time point during the 
outgoing or incoming phase) or goal distance (i.e., the instantaneous 
Euclidean distance to the goal during the outgoing or incoming phase).

We assumed that goal proximity and integrated path were cor-
related, because this is often the case in the real world. To test this 
assumption empirically, we correlated goal proximity and integrated 
path across the entire time of the experiment within each participant. 
We tested each participant’s empirical Spearman  value against a 
surrogate distribution of  values established by shuffling the data 
time series for 10,000 times. We transformed the resulting P value 
into a z value. The mean empirical z value across participants was 
tested against a surrogate distribution of mean z values established 
by random sign flips for 10,000 times.

As expected, we found that goal proximity and integrated path 
were related in our task ( = 0.38, Z = 3.72, P < 0.001). Therefore, we 
built a third GLM that included both parametric modulators at the 
same time. Goal proximity was entered first, and integrated path 
was entered as a second orthogonalized parametric modulator. We 
then correlated the  values for the integrated path regressor from 
this GLM with the  values from the GLM that only included the 
integrated path as parametric modulator to show that representa-
tions of integrated path were not a side effect of goal proximity 
representations.

In the subtask model (fig. S5), we modeled start phase, outgoing 
phase, incoming phase, and “feedback” separately for each of the three 
subtasks and each of the two runs (24 regressors). The duration of 
these regressors corresponded to the duration of the respective 
phases in each trial. In addition, in the outgoing phase, we included 
“PI difficulty” as a parametric modulator, reflecting the number of 
distractor trees in each trial (with values of 1 to 5). This parametric 
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modulator resembles the outgoing distance in the behavioral analyses 
and was included to reduce error variance in the GLM. We tested 
two contrasts: “BPI > PPI” and “LPI > PPI”.

All parametric modulators were normalized to values between 0 
and 1 and mean centered. All regressors were convolved with the 
hemodynamic response function before entering the GLM. As 
nuisance regressors, we included motion parameters as estimated 
in the realignment procedure and mean value of WM and cortico-
spinal fluid. We did not model temporal derivatives.
ROI analysis. For the ROI analysis, we extracted mean  values 
(SPM con-files) from our three ROIs (EC, HC, and PC/RSC) in 
native space and compared them against zero across participants by 
means of t tests for normally distributed data or Wilcoxon’s ranked 
sum tests otherwise. To compare mean  values across subtasks, we used 
repeated-measures analysis of variance (ANOVA) or Friedman ANOVA 
if data did not fulfill normality assumption. To test for differences 
between two conditions post hoc, we used t tests (or Wilcoxon ranked 
sum tests if normality assumption was violated).

Whenever we used the same model for several ROIs or several 
contrasts, we corrected for multiple comparisons using FDR, cor-
rected for the number of contrasts and the number of ROIs ( < 0.05) 
as implemented in R, and adjusted the P values accordingly.

For the PI model, we corrected for six multiple comparisons 
when assessing the relationship between mean  values and the 
parametric modulators (integrated path or goal proximity, respec-
tively). These six comparisons correspond to three ROIs (EC, HC, 
and PC/RSC) and two contrasts against zero (one parametric 
modulator during the outgoing phase and one parametric modulator 
during the incoming phase).

Only if a contrast tested against zero showed a significant effect 
for an ROI (corrected for six multiple comparisons), we tested for 
differences between subtasks (one-way repeated-measures ANOVA 
with subtask as within-subjects factor) and again corrected for the 
number of ROIs. We performed two types of post hoc comparisons: 
(i) We compared the subtasks against each other and corrected for 
three comparisons (PPI versus BPI, PPI versus LPI, and BPI versus LPI), 
and (ii) we tested every subtask against zero and likewise corrected 
for three comparisons (PPI versus 0, BPI versus 0, and LPI versus 0).

For the subtask model, we assessed the influence of either a 
boundary or a landmark in the environment on BOLD activity and 
thus corrected for six multiple comparisons (three ROIs: EC, HC, 
and PC/RSC; two contrasts: BPI > PPI and LPI > PPI). We did not 
directly compare the boundary and landmark condition.
Whole-brain analysis. In the subtask model, we performed whole-
brain analyses on the contrasts between subtasks. Contrast images 
from the first-level analysis of each participant were entered into a 
GLM, treating “subjects” as a random effect. Statistical parametric maps 
were initially thresholded at a family-wise error (FWE)–corrected 
 level of P < 0.05 across the whole brain. We considered clusters 
significant at P < 0.05, FWE-corrected (extent threshold of five voxels). 
For all significant clusters, we provide maximum probability 
tissue labels with MNI coordinates derived from the Neuromor-
phometrics atlas as implemented in SPM12 (www.oasis-brains.org/; 
http://Neuromorphometrics.com/). Given our hypothesis that EC, 
HC, and PC/RSC would be involved in our task, we used small vol-
ume correction with a mask of the EC, HC, and PC/RSC. We derived 
these masks from FreeSurfer by warping subject-specific ROIs to 
standard space, averaging the mask across subjects, and threshold-
ing the composite mask such that a selected voxel was included in 

the masks of at least 50% of the participants. Thereby, we ensured 
that results of the ROI analysis and the whole-brain analysis would 
correspond as closely as possible.
Grid-like representations. To detect GLRs in the fMRI data, we per-
formed a representational similarity analysis following a previous 
study (14). The rationale underlying this analysis is that the activi-
ty of a grid cell population should be similar during movements 
that are n*60° offset from each other (due to the sixfold rotational 
symmetry of the grid pattern), where n = {0, 1, …, 6}. In other 
words, the activity of a grid cell population should be relatively sim-
ilar at angular steps of 60°. By contrast, the activity of a grid cell 
population should be relatively dissimilar during movements that 
are n*60° + 30° offset from each other. In the following, the former 
condition is termed “mod(,60°) = 0°” and the latter condition is termed 
“mod(,60°) = 30°” (where  refers to the angular difference between 
movement directions and “mod” indicates the modulo operator; Fig. 6A).

Analysis steps comprised (i) extracting the voxelwise signal 
within the ROIs for every fMRI volume; (ii) calculating the mean 
orientation, speed, and trial number associated with each fMRI vol-
ume; (iii) excluding volumes associated with slow movement (<33% 
average movement speed); (iv) creating means of volumes within 
bins of 5° orientation based on the information about mean orien-
tation; (v) calculating the angular difference of movement direc-
tions between volume bins; (vi) calculating Fisher z-transformed 
Pearson correlations between the volume bins; and (vii) deleting 
correlations of the same trial to reduce effects of temporal auto-
correlations between subsequent fMRI volumes. We compared pattern 
similarities of angular differences of ±15° from the mod(,60°) = 0° 
condition, for which we expected higher pattern similarity, against 
angular differences of ±15° from the mod(,60°) = 30° condition, 
for which we expected lower pattern similarity.

As a control, we re-performed the analysis after excluding cor-
relations based on angular differences of ±15° from 0° to exclude 
the possibility that GLRs were driven by similarities of activity 
during movements in the same direction (in 360° space), possibly 
reflecting a head direction signal. To examine the specificity of 
sixfold rotational symmetry, we performed further control analyses 
that tested for other types of rotational symmetry (fourfold, five-
fold, sevenfold, and eightfold rotational symmetry).

To exclude possible effects of autocorrelations as a confound, we 
tested whether the temporal proximity between fMRI volumes 
assigned to the two conditions was similar. We thus calculated the 
mean TR difference between every possible combination of angular 
differences and averaged within the mod(,60°) = 0° condition and 
the mod(,60°) = 30° condition for every participant. We calculated 
a paired t test across participants to ensure that the temporal 
proximity did not differ between the two conditions. Last, for each 
participant separately, we checked for uniform sampling of move-
ment directions in 360° and 60° spaces. To this end, we transformed 
the movement directions (in 360° space or in 60° space) into bins of 
5° and tested if the orientation bins deviated from uniformity by 
means of a Rayleigh test. This resulted in an empirical z value that 
we tested against a surrogate distribution established by shuffling 
the orientation bins 10,000 times. Comparing the empirical z value 
against the distribution of surrogate z values resulted in one P value 
for each participant reflecting how normal or extreme the empirical 
z value of each participant was.

We calculated spatial and temporal signal-to-noise ratios (SNRs) 
[following (14)] by extracting the voxelwise signal of alEC and 
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pmEC for each hemisphere and either calculating the mean and the 
SD across time points (temporal SNR) or across voxels (spatial 
SNR). We compared SNRs between EC subregions (alEC versus 
pmEC) and between hemispheres (left versus right) using a two-
way ANOVA. By means of a Pearson correlation, we tested whether 
the strength of GLRs was significantly related to the SNRs of pmEC.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/35/eaba1394/DC1

View/request a protocol for this paper from Bio-protocol.
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