55 research outputs found

    A synaptic learning rule for exploiting nonlinear dendritic computation

    Get PDF
    Information processing in the brain depends on the integration of synaptic input distributed throughout neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration by a multilayer network, potentially endowing single neurons with substantial computational power. However, whether neurons can learn to harness dendritic properties to realize this potential is unknown. Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of synaptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold potentials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing optimal implementation of nonlinear functions by single neurons

    Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior

    Get PDF
    The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an ‘all-optical’ combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory

    Targeted genetic analysis in a large cohort of familial and sporadic cases of aneurysm or dissection of the thoracic aorta

    Get PDF
    PURPOSE: Thoracic aortic aneurysm/aortic dissection (TAAD) is a disorder with highly variable age of onset and phenotype. We sought to determine the prevalence of pathogenic variants in TAAD-associated genes in a mixed cohort of sporadic and familial TAAD patients and identify relevant genotype–phenotype relationships. METHODS: We used a targeted polymerase chain reaction and next-generation sequencing–based panel for genetic analysis of 15 TAAD-associated genes in 1,025 unrelated TAAD cases. RESULTS: We identified 49 pathogenic or likely pathogenic (P/LP) variants in 47 cases (4.9% of those successfully sequenced). Almost half of the variants were in nonsyndromic cases with no known family history of aortic disease. Twenty-five variants were within FBN1 and two patients were found to harbor two P/LP variants. Presence of a related syndrome, younger age at presentation, family history of aortic disease, and involvement of the ascending aorta increased the risk of carrying a P/LP variant. CONCLUSION: Given the poor prognosis of TAAD that is undiagnosed prior to acute rupture or dissection, genetic analysis of both familial and sporadic cases of TAAD will lead to new diagnoses, more informed management, and possibly reduced mortality through earlier, preclinical diagnosis in genetically determined cases and their family members

    Identification of ovule transcripts from the Apospory-Specific Genomic Region (ASGR)-carrier chromosome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apomixis, asexual seed production in plants, holds great potential for agriculture as a means to fix hybrid vigor. Apospory is a form of apomixis where the embryo develops from an unreduced egg that is derived from a somatic nucellar cell, the aposporous initial, via mitosis. Understanding the molecular mechanism regulating aposporous initial specification will be a critical step toward elucidation of apomixis and also provide insight into developmental regulation and downstream signaling that results in apomixis. To discover candidate transcripts for regulating aposporous initial specification in <it>P. squamulatum</it>, we compared two transcriptomes derived from microdissected ovules at the stage of aposporous initial formation between the apomictic donor parent, <it>P. squamulatum </it>(accession PS26), and an apomictic derived backcross 8 (BC<sub>8</sub>) line containing only the Apospory-Specific Genomic Region (ASGR)-carrier chromosome from <it>P. squamulatum</it>. Toward this end, two transcriptomes derived from ovules of an apomictic donor parent and its apomictic backcross derivative at the stage of apospory initiation, were sequenced using 454-FLX technology.</p> <p>Results</p> <p>Using 454-FLX technology, we generated 332,567 reads with an average read length of 147 base pairs (bp) for the PS26 ovule transcriptome library and 363,637 reads with an average read length of 142 bp for the BC<sub>8 </sub>ovule transcriptome library. A total of 33,977 contigs from the PS26 ovule transcriptome library and 26,576 contigs from the BC<sub>8 </sub>ovule transcriptome library were assembled using the Multifunctional Inertial Reference Assembly program. Using stringent <it>in silico </it>parameters, 61 transcripts were predicted to map to the ASGR-carrier chromosome, of which 49 transcripts were verified as ASGR-carrier chromosome specific. One of the alien expressed genes could be assigned as tightly linked to the ASGR by screening of apomictic and sexual F<sub>1</sub>s. Only one transcript, which did not map to the ASGR, showed expression primarily in reproductive tissue.</p> <p>Conclusions</p> <p>Our results suggest that a strategy of comparative sequencing of transcriptomes between donor parent and backcross lines containing an alien chromosome of interest can be an efficient method of identifying transcripts derived from an alien chromosome in a chromosome addition line.</p

    Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects

    Get PDF
    Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha‟Âč per year (95% CI 0.14—0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere

    Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2

    Get PDF
    Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function

    Cox process representation and inference for stochastic reaction-diffusion processes

    Get PDF
    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
    • 

    corecore