72 research outputs found

    Increased Osteoclastogenesis in Mice Lacking the Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1

    Get PDF
    Alterations in bone remodeling are a major public health issue, as therapeutic options for widespread bone disorders such as osteoporosis and tumor-induced osteolysis are still limited. Therefore, a detailed understanding of the regulatory mechanism governing bone cell differentiation in health and disease are of utmost clinical importance. Here we report a novel function of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a member of the immunoglobulin superfamily involved in inflammation and tumorigenesis, in the physiologic regulation of bone remodeling. Assessing the expression of all members of the murine Ceacam family in bone tissue and marrow, we found CEACAM1 and CEACAM10 to be differentially expressed in both bone-forming osteoblasts and bone-resorbing osteoclasts. While Ceacam10-deficient mice displayed no alteration in structural bone parameters, static histomorphometry demonstrated a reduced trabecular bone mass in mice lacking CEACAM1. Furthermore, cellular and dynamic histomorphometry revealed an increased osteoclast formation in Ceacam1-deficient mice, while osteoblast parameters and the bone formation rate remained unchanged. In line with these findings, we detected accelerated osteoclastogenesis in Ceacam1-deficient bone marrow cells, while osteoblast differentiation, as determined by mineralization and alkaline phosphatase assays, was not affected. Therefore, our results provide in vivo and in vitro evidence for a physiologic role of CEACAM1 in the regulation of osteoclastogenesis

    A large-scale transcontinental river system crossed West Antarctica during the Eocene

    Get PDF
    Extensive ice coverage largely prevents investigations of Antarctica’s unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from &gt;40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a &gt;1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation.</jats:p

    A review of nitrogen isotopic alteration in marine sediments

    Get PDF
    Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle

    First results of sedimentological investigations of MeBo drill cores recovered from the West Antarctic continental shelf in the Amundsen Sea

    Get PDF
    During expedition PS104 with RV Polarstern in February and March 2017 the MARUM MeBo 70 seabed drilling system was deployed at nine sites on the continental shelf of the Amundsen Sea Embayment, West Antarctica. A total of 57 meters of sediment core were recovered from 11 boreholes located in Pine Island Bay, Pine Island Trough, Bear Ridge and Cosgrove-Abbot Trough with recovery rates ranging from 7 to 76%. The main scientific objective of the drilling was to reconstruct the Late Mesozoic to Quaternary environmental history in this part of the Antarctic continental margin, with a special focus on the past dynamics of the marine based West Antarctic Ice Sheet (WAIS) from its inception to the last glacial cycle. Another main goal of the expedition was to test the suitability of the MeBo drill system for operating on the Antarctic continental shelf and recovering pre-glacial and glacially influenced sedimentary sequences. Here we will present the first results of sedimentological investigations carried out on the drill cores. These comprise (i) visual lithological descriptions, (ii) CT-scanning records of core stratigraphy, sedimentary structures, and possible artefacts induced by the drilling process, (iii) measurements of physical properties performed with a multi-sensor core logger, and (iv) characterisation of the geochemical composition of the drilled sedimentary strata using X-ray fluorescence (XRF) scanner data. Preliminary biostratigraphic investigations conducted on board ship indicated that the recovered sedimentary strata were deposited during various time slices spanning from the Late Cretaceous–Palaeocene to the Late Quaternary. We will provide an update of these initial chronological findings. Keywords: Drill cores, shelf sediments, West Antarctic Ice Sheet

    Last Glacial to Holocene changes in South Atlantic deep water circulation

    No full text
    A set of 55 benthic foraminiferal stable carbon and oxygen isotope time series, including 28new records, is presented from the South Atlantic Ocean between 6°N and 47°S. We compiled theserecords with published data of the eastern North Atlantic to reconstruct the Atlantic deepwatercirculation for the Last Glacial Maximum (19-23 ka) and the Late Holocene (0-4 ka) times. To betterunderstand the spatial distribution of deep and bottom water masses, we assigned these records tothree North-South sections representing the western South Atlantic, the central Atlantic east of theMid-Atlantic Ridge, and the eastern marginal Atlantic. Corrections of up to +0.4 per mil are suggested forseveral benthic d13C values of cores located in high-productivity areas, to adjust for phytodetritusinduceddepletion of especially glacial values. As a result of this new compilation, no shift of NADWto intermediate depth during the last glacial maximum is evident in the eastern and western marginalAtlantic. Instead, the core of an 13C-enriched water mass spreading southward to at least 30°Sbetween 1200 and 1900 m points to a source of this water mass close to the Isthmus of Gibraltar,indicated by d13C-values of up to 1.8 per mil. Therefore, we interpret this layer as an extended tongue ofthe Mediterranean Outflow Water. Below, a layer of glacial NADW is shown to flow southward atabout the same depth interval or even deeper than it does today, although slightly depleted in 13Cand less extended in water column. The admixing of NADW into the circumantarctic deepwater beltoccurred a few degrees farther north than today, marked by a steep gradient in glacial d13C between 30° and 40°S. From these gradients we derive a local formation of Southern Ocean deep water in thezone of extended winter sea-ice coverage south of the polar front. The spreading of this newlyformed water mass, however, is restricted to the Atlantic basins south of Walvis Ridge and Rio-Grande Rise, where only a small amount of nutrient-enriched deep water passes across these barriersinto the northern basins. Converted into nutrient concentrations, the new carbon isotope data setgives only a slight increase in the nutrient inventory of the deep Atlantic, in good agreement withpreviously published Cd/Ca data

    From aragonite to calcite: Impacts of recrystallization on stable isotope (δ18O & δ13C) composition of the bivalve bio-archive Arctica islandica

    Get PDF
    Shells of the bivalve Arctica islandica serve as high-resolution archive of past environmental conditions. Stable oxygen isotopes (δ18O) values from wellpreserved A. islandica shells are frequently used as a proxy for water temperature (and salinity). Hence, this species may improve distinctly our understanding of seasonal temperature dynamics in the past. We present the first stable isotope (δ18O & δ13C) analysis on a fossil semi-recrystallized A. islandica shell from the Tjörnes Beds of Iceland (Pliocene). Confocal Raman microscopy is used to identify areas of pristine aragonite and recrystallized calcite shell, which were then sampled by highresolution micro-milling. We compare paleo-water temperatures inferred from stable oxygen isotope ratios of both recrystallized and non-recrystallized portions of the shell to highlight and discuss the impacts of taphonomic alterations on a micro-scale and its implications for paleo-environmental reconstructions. Our findings emphasize the need for careful interpretation of carbonate-based water temperature reconstructions, because small-scale diagenesis can significantly modify the original stable oxygen isotope signature and substantially distort the paleoclimatic or paleoenvironmental signals inferred thereof

    Temperate rain forests at 77°S palaeolatitude during the Late Cretaceous

    No full text
    The ‘greenhouse climate’ of the Late Cretaceous epoch was one of the Earth’s warmest periods of the past 140 Ma, particularly at high latitudes. However, records allowing insights into terrestrial environmental conditions south of the Antarctic circle during that time are extremely rare. Hence, it remains highly elusive how the sensitive South Polar environment may have been impacted by such an extreme climate. Here we report a unique sedimentary sequence that was recovered with the MeBo-70 sea floor drill rig from the central Amundsen Sea Embayment shelf, West Antarctica. The record contains ~26 m of quartzitic sandstone underlain by a lithified swamp deposit that consists of a ~2 m-long complex and intact network of in-situ fossil plant roots embedded in a mudstone matrix. The lower ~1.5 m of this mudstone contain a highly diverse pollen and spore assemblage, documenting a temperate coastal lowland rain forest environment with mean annual temperatures of 11-15°C at a palaeolatitude of 77°S. Hence, the drill record provides the hitherto southernmost evidence of Cretaceous terrestrial environmental conditions and reveals a ‘greenhouse climate’ that was capable of maintaining a temperate environment much further south than previously known. The predictive capabilities of model simulations for high-latitude climate and environment characteristics for this critical period of Earth’s climatic history can therefore now be evaluated more reliably

    Documenting past retreats of the West Antarctic Ice Sheet – Drilling targets in the Amundsen Sea Embayment

    No full text
    The West Antarctic Ice-Sheet (WAIS) is likely to have been subject to very dynamic changes during its history as most of its base is grounded below modern sea-level, making it particularly sensitive to climate changes. Its collapse would result in global sea-level rise of 3-5 m. The reconstruction and quantification of possible partial or full collapses of the WAIS in the past can provide important constraints for ice-sheet models, used for projecting its future behaviour and resulting sea-level rise. Large uncertainties exist regarding the chronology, extent, rates as well as spatial and temporal variability of past advances and retreats of the WAIS across the continental shelves. By using the seafloor drilling device MeBo during an RV Polarstern cruise scheduled for early 2017, a series of sediment cores will be drilled on the Amundsen Sea Embayment (ASE) shelf, where seismic data show glacially-derived sequences covered by only a thin veneer of postglacial deposits in some areas. From analyses of seismic data, we infer that interglacial sediments can be sampled which may have been deposited under seasonally open water conditions and thus contain datable microfossil-bearing material. A shallow basin near the Pine Island Glacier front will be one of the prime targets for the drilling. The near-horizontal seismic reflection horizons may represent a sequence of continuously deposited, mainly terrigenous material, including ice-rafted debris, meltwater deposits and hemipelagic sediments deposited rapidly during the last deglaciation and Holocene or a series of unconformities caused by erosion resulting from grounding line oscillations through numerous glacial cycles. Subglacial bedforms imaged in multibeam bathymetric data indicate fast glacial flow over some shelf areas of the ASE, where seismic profiles show acoustic basement near the seafloor. It is unknown, whether fast ice-flow in these areas was facilitated by water-lubricated sliding over bedrock or presence of a thin layer of deformable till (perhaps less than a metre in thickness). The nature of this layer holds important clues for understanding the processes that operated beneath the margin of the ice-sheet, beneath ice-flows and on ridges between ice-streams during the Last Glacial Maximum. Grounding zone wedges (GZWs) are widely thought to be important in stabilising grounding line positions during ice-sheet retreat, but hypotheses about the processes and duration of their formation and their composition, are mainly based on conceptual models. Drill sites on and near GZWs are aimed to establish the nature of their sediments, their formation processes, their rates of growth and the palaeo-environmental conditions in their surroundings

    Temperate rainforests near the South Pole during peak Cretaceous warmth

    No full text
    The mid-Cretaceous period was one of the warmest intervals of the past 140 million years, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf—the southernmost Cretaceous record reported so far—and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82°S during the Turonian–Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120–1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide

    Revealing potential past collapses of the West Antarctic Ice Sheet - Upcoming drilling in the Amundsen Sea Embayment

    No full text
    The West Antarctic Ice-Sheet (WAIS) is likely to have been subject to very dynamic changes during its history as most of its base is grounded below modern sea-level, making it particularly sensitive to climate changes. Its collapse would result in global sea-level rise of 3-5 m. The reconstruction and quantification of possible partial or full collapses of the WAIS in the past can provide important constraints for ice-sheet models, used for projecting its future behaviour and resulting sea-level rise. Large uncertainties exist regarding the chronology, extent, rates as well as spatial and temporal variability of past advances and retreats of the WAIS across the continental shelves. By using the seafloor drilling device MeBo during an RV Polarstern cruise scheduled for early 2015, a series of sediment cores will be drilled on the Amundsen Sea Embayment (ASE) shelf, where seismic data show glacially-derived sequences covered by only a thin veneer of postglacial deposits in some areas. From analyses of seismic data, we infer that interglacial sediments can be sampled which may have been deposited under seasonally open water conditions and thus contain datable microfossil-bearing material. A shallow basin near the Pine Island Glacier front will be one of the prime targets for the drilling. The near-horizontal seismic reflection horizons may represent a sequence of continuously deposited, mainly terrigenous material, including ice-rafted debris, meltwater deposits and hemipelagic sediments deposited rapidly during the Holocene or a series of unconformities caused by erosion resulting from grounding line oscillations through many glacial cycles. Subglacial bedforms imaged in multibeam bathymetric data indicate fast glacial flow over some shelf areas of the ASE, where seismic profiles show acoustic basement near the seafloor. It is unknown, whether fast ice-flow in these areas was facilitated by water-lubricated sliding over bedrock or presence of a thin layer of deformable till (perhaps less than a metre in thickness). The nature of this layer holds important clues for understanding the processes that operated beneath the margin of the ice-sheet, beneath ice-flows and on ridges between ice-streams during the Last Glacial Maximum. Grounding zone wedges (GZWs) are widely thought to be important in stabilising grounding line positions during ice-sheet retreat, but hypotheses about the processes and duration of their formation and their composition, are mainly based on conceptual models. Drill sites on and near GZWs are aimed to establish the nature of their sediments, their formation processes, their rates of growth and the palaeo-environmental conditions in their surroundings
    • …
    corecore