55 research outputs found

    The clinical features of osteogenesis imperfecta in Vietnam

    Get PDF
    Purpose Osteogenesis imperfecta (OI) has not been studied in a Vietnamese population before. The aim of this study was to systematically collect epidemiological information, investigate clinical features and create a clinical database of OI patients in Vietnam for future research and treatment strategy development. Method Participants underwent clinical and physical examinations; also medical records were reviewed. Genealogical information was collected and family members’ phenotypical manifestations recorded. Cases were classified according to the Sillence classification. Results In total, 146 OI patients from 120 families were studied: 46 with OI Type I, 46 with Type III and 54 with Type IV. Almost patients had skeletal deformations. One hundred and forty-two had a history of fractures, 117 blue sclera, 89 dentinogenesis imperfecta and 26 hearing loss. The total number of fractures was 1,932. Thirty-four patients had intra-uterine fractures and nine had perinatal fractures. Surgery was performed 163 times in 58 patients; 100 osteosyntheses and 63 osteotomies. Bisphosphonate treatment was used in 37 patients. The number of affected individuals and predominance of severe forms of OI indicate that the disease is under diagnosed in Vietnam, especially in cases without a family history or with mild form of OI. Deformities appeared in all patients with different severity and localisation, affecting mostly the lower limbs. OI medical and surgical treatment rates are low and in most cases surgery was performed due to fractures. Conclusions Compared to previous studies, our results indicate a lower OI prevalence and greater severity of symptoms in the Vietnamese population when compared with other areas. Further investigation, improved diagnosis and treatment are needed to increase the patients’ quality of life

    The epidemiology and aetiology of diarrhoeal disease in infancy in southern Vietnam: a birth cohort study.

    Get PDF
    OBJECTIVES: Previous studies indicate a high burden of diarrhoeal disease in Vietnamese children, however longitudinal community-based data on burden and aetiology are limited. The findings from a large, prospective cohort study of diarrhoeal disease in infants in southern Vietnam are presented herein. METHODS: Infants were enrolled at birth in urban Ho Chi Minh City and a semi-rural district in southern Vietnam, and followed for 12 months (n=6706). Diarrhoeal illness episodes were identified through clinic-based passive surveillance, hospital admissions, and self-reports. RESULTS: The minimum incidence of diarrhoeal illness in the first year of life was 271/1000 infant-years of observation for the whole cohort. Rotavirus was the most commonly detected pathogen (50% of positive samples), followed by norovirus (24%), Campylobacter (20%), Salmonella (18%), and Shigella (16%). Repeat infections were identified in 9% of infants infected with rotavirus, norovirus, Shigella, or Campylobacter, and 13% of those with Salmonella infections. CONCLUSIONS: The minimum incidence of diarrhoeal disease in infants in both urban and semi-rural settings in southern Vietnam was quantified prospectively. A large proportion of laboratory-diagnosed disease was caused by rotavirus and norovirus. These data highlight the unmet need for a rotavirus vaccine in Vietnam and provide evidence of the previously unrecognized burden of norovirus in infants

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry

    Get PDF
    Abstract: We have obtained sensitive dust continuum polarization observations at 850 ÎŒm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B-fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (∌2000 au or ∌0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 ÎŒG, respectively. These cores show distinct mean B-field orientations. The B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B-field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations

    Get PDF
    We report 850 Όm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity

    The JCMT BISTRO Survey: An 850/450 Ό m Polarization Study of NGC 2071IR in Orion B

    Get PDF
    Abstract: We present the results of simultaneous 450 ÎŒm and 850 ÎŒm polarization observations toward the massive star-forming region NGC 2071IR, a target of the BISTRO (B-fields in STar-forming Region Observations) Survey, using the POL-2 polarimeter and SCUBA-2 camera mounted on the James Clerk Maxwell Telescope. We find a pinched magnetic field morphology in the central dense core region, which could be due to a rotating toroidal disklike structure and a bipolar outflow originating from the central young stellar object IRS 3. Using the modified Davis–Chandrasekhar–Fermi method, we obtain a plane-of-sky magnetic field strength of 563 ± 421 ÎŒG in the central ∌0.12 pc region from 850 ÎŒm polarization data. The corresponding magnetic energy density of 2.04 × 10−8 erg cm−3 is comparable to the turbulent and gravitational energy densities in the region. We find that the magnetic field direction is very well aligned with the whole of the IRS 3 bipolar outflow structure. We find that the median value of polarization fractions is 3.0% at 450 ÎŒm in the central 3â€Č region, which is larger than the median value of 1.2% at 850 ÎŒm. The trend could be due to the better alignment of warmer dust in the strong radiation environment. We also find that polarization fractions decrease with intensity at both wavelengths, with slopes, determined by fitting a Rician noise model of 0.59 ± 0.03 at 450 ÎŒm and 0.36 ± 0.04 at 850 ÎŒm, respectively. We think that the shallow slope at 850 ÎŒm is due to grain alignment at the center being assisted by strong radiation from the central young stellar objects

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 ÎŒm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense ( NH2∌1022 –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∌160 ± 30 ÎŒG in the main starless core and up to ∌90 ± 40 ÎŒG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĂ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main

    Get PDF
    Abstract: We present 850 ÎŒm polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope as part of the B-fields In STar-forming Region Observations survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less-dense filamentary structures where NH2<0.93×1022 cm−2 (magnetic fields perpendicular to density gradients), while they are perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at NH2≈4.6×1022 cm−2. This can be interpreted as a signature of core formation. At NH2≈16×1022 cm−2, magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments (B POS = 60–300 ÎŒG)) using the Davis–Chandrasekhar–Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities
    • 

    corecore