146 research outputs found

    A validated LC–MS/MS method for quantitative determination of L-dopa in Fagioli di Sarconi beans (Phaseolus vulgaris L.)

    Get PDF
    An analytical method based on ultrasound assisted extraction (UAE) and liquid chromatography 36 coupled to electrospray tandem mass spectrometry (LC–ESI/MS/MS) was validated and applied for 37 determining L-dopa in four ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris L.), marked 38 with the European label PGI (Protected Geographical Indication). The selectivity of the proposed 39 method was ensured by the specific fragmentation of the analyte. Simple isocratic chromatographic 40 conditions and mass spectrometric detection in multiple reaction monitoring (MRM) acquisition 41 mode were used for sensitive quantification. The LC–ESI/MS/MS method was validated within a 42 linear range of 0.001–5.000 μg/mL. Values of 0.4 and 1.1 ng/mL were obtained for limit of detection 43 and limit of quantification, respectively. The repeatability, inter-day precision and recovery values 44 ranges were 0.6-4.5%, 5.4-9.9%, 83-93 %, respectively. Fresh and dried beans cultivated exclusively 45 with organic methods avoiding any synthetic fertilizers and pesticides, as well as pods, were analyzed 46 showing a L-dopa content ranging from 0.020±0.005 μg/g to 2.34±0.05 μg/g dry weight

    A Critical Overview of Enzyme-Based Electrochemical Biosensors for L-Dopa Detection in Biological Samples

    Get PDF
    L-Dopa is an intermediate amino acid in the biosynthesis of endogenous catecholamines, such as dopamine. It is currently considered to be the optimal dopaminergic treatment for Parkinson’s disease, a neurodegenerative disorder affecting around 1% of the population. In an advanced stage of the disease, complications such as dyskinesia and psychosis are caused by fluctuations in plasma drug levels. Real-time monitoring of L-Dopa levels would be advantageous for properly adjusting drug dosing, thus improving therapeutic efficacy. Electrochemical methods have advantages such as easyto- use instrumentation, fast response time, and high sensitivity, and are suitable for miniaturization, enabling the fabrication of implantable or wearable devices. This review reports on research papers of the past 20 years (2003–2023) dealing with enzyme-based biosensors for the electrochemical detection of L-Dopa in biological samples. Specifically, amperometric and voltammetric biosensors, whose output signal is a measurable current, are discussed. The approach adopted includes an initial study of the steps required to assemble the devices, i.e., electrode modification and enzyme immobilization. Then, all issues related to their analytical performance in terms of sensitivity, selectivity, and capability to analyze real samples are critically discussed. The paper aims to provide an assessment of recent developments while highlighting limitations such as poor selectivity and long-term stability, and the laborious and time-consuming fabrication protocol that needs to be addressed from the perspective of the integrated clinical management of Parkinson’s disease

    An Amperometric Biosensor Based on a Bilayer of Electrodeposited Graphene Oxide and Co-Crosslinked Tyrosinase for L-Dopa Detection in Untreated Human Plasma

    Get PDF
    L-Dopa, a bioactive compound naturally occurring in some Leguminosae plants, is the most effective symptomatic drug treatment for Parkinson’s disease. During disease progression, fluctuations in L-DOPA plasma levels occur, causing motor complications. Sensing devices capable of rapidly monitoring drug levels would allow adjusting L-Dopa dosing, improving therapeutic outcomes. A novel amperometric biosensor for L-Dopa detection is described, based on tyrosinase co-crosslinked onto a graphene oxide layer produced through electrodeposition. Careful optimization of the enzyme immobilization procedure permitted to improve the long-term stability while substantially shortening and simplifying the biosensor fabrication. The effectiveness of the immobilization protocol combined with the enhanced performances of electrodeposited graphene oxide allowed to achieve high sensitivity, wide linear range, and a detection limit of 0.84 μM, suitable for L-Dopa detection within its therapeutic window. Interference from endogenous compounds, tested at concentrations levels typically found in drug-treated patients, was not significant. Ascorbic acid exhibited a tyrosinase inhibitory behavior and was therefore rejected from the enzymatic layer by casting an outer Nafion membrane. The proposed device was applied for L-Dopa detection in human plasma, showing good recoveries

    Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review

    Get PDF
    Apples represent a greater proportion of the worldwide fruit supply, due to their availability on the market and to the high number of existing cultivar varieties and apple-based products (fresh fruit, fruit juice, cider, and crushed apples). Several studies on apple fruit metabolites are available, with most of them focusing on their healthy properties’ evaluation. In general, the metabolic profile of apple fruits strongly correlates with most of their peculiar characteristics, such as taste, flavor and color. At the same time, many bioactive molecules could be identified as markers of a specific apple variety. Therefore, a complete description of the analytical protocols commonly used for apple metabolites’ characterization and quantification could be useful for researchers involved in the identification of new phytochemical compounds from different apple varieties. This review describes the analytical methods published in the last ten years, in order to analyze the most important primary and secondary metabolites of Malus Domestica fruits. In detail, this review gives an account of the spectrophotometric, chromatographic, and mass spectrometric methods. A discussion on the quantitative and qualitative analytical shortcomings for the identification of sugars, fatty acids, polyphenols, organic acids, carotenoids, and terpenes found in apple fruits is reported

    Legal Cannabis sativa L. Dried Inflorescences: Cannabinoids Content and Cytotoxic Activity against Human HepG2 Cell Line

    Get PDF
    Cannabis sativa L. has health benefits, principally due to the levels and ratios of two impor- tant cannabinoids, ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC:CBD ratio affects their pharmacological interaction for the treatment of different diseases as well as its modulation allows for a custom-made product that utilizes the distinguishing effects of CBD, THC, or both, for a peculiar patient or clinical effect. This study aims to investigate the total content of THC, CBD, and their ratio in 34 dried inflorescence legally sold in physical and online stores, by using a validated liquid chromatography-ultraviolet (HPLC-UV) method, after cannabinoids identification performed through MSn studies. Cannabinol (CBN) content was also monitored to evaluate hemp age or con- servation status. CBN content always resulted lower than limit of quantification, thus confirming well-stored fresh hemp. All investigated samples showed a total THC amount below 0.59% w/w, thus responding to legal requirements.. The total CBD amount ranged from 2.62 to 20.27% w/w and it was not related to THC level. THC:CBD ranged among 1:3 and 1:26, thus ascertaining their suitability for different target pharmacological uses. In vitro studies using human hepatoblastoma cell line HepG2 suggested that hemp extracts with THC:CBD ratios of 1:9 exhibited higher toxicity than pure cannabinoids

    Clinically relevant increases in serum neurofilament light chain and glial fibrillary acidic protein in patients with Susac syndrome

    Get PDF
    Background and purpose: Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising neuro-axonal damage and astrocytic activation biomarkers. Susac syndrome (SS) is an increasingly recognized neurological condition and biomarkers that can help assess and monitor disease evolution are highly needed for the adequate management of these patients. sNfL and sGFAP levels were evaluated in patients with SS and their clinical relevance in the relapse and remission phase of the disease was assessed. Methods: As part of a multicentre study that enrolled patients diagnosed with SS from six international centres, sNfL and sGFAP levels were assessed in 22 SS patients (nine during a relapse and 13 in remission) and 59 age- and sex-matched healthy controls using SimoaTM assay Neurology 2-Plex B Kit. Results: Serum NfL levels were higher than those of healthy controls (p < 0.001) in SS patients and in both subgroups of patients in relapse and in remission (p < 0.001 for both), with significantly higher levels in relapse than in remission (p = 0.008). sNfL levels showed a negative correlation with time from the last relapse (r = -0.663; p = 0.001). sGFAP levels were slightly higher in the whole group of patients than in healthy controls (p = 0.046) and were more pronounced in relapse than in remission (p = 0.013). Conclusion: In SS patients, both sNFL and sGFAP levels increased compared with healthy controls. Both biomarkers had higher levels during clinical relapse and much lower levels in remission. sNFL was shown to be time sensitive to clinical changes and can be useful to monitor neuro-axonal damage in SS

    Cortical dynamics in visual areas induced by the first use of multifocal contact lenses in presbyopes

    Get PDF
    A common non-spectacle strategy to correct presbyopia is to provide simultaneous images with multifocal optical designs. Understanding the neuroadaptation mechanisms behind multifocal devices usage would have important clinical implications, such as predicting whether patients will be able to tolerate multifocal optics. The aim of this study was to evaluate the brain correlates during the initial wear of multifocal contact lenses (CLs) using high-density visual evoked potential (VEP) measures. Fifteen presbyopes (mean age 51.8 ± 2.6 years) who had previously not used multifocal CLs were enrolled. VEP measures were achieved while participants looked at arrays of 0.5 logMAR Sloan letters in three different optical conditions arranged with CLs: monofocal condition with the optical power appropriate for the distance viewing; multifocal correction with medium addition; and multifocal correction with low addition. An ANOVA for repeated measures showed that the amplitude of the C1 and N1 components significantly dropped with both multifocal low and medium addition CL conditions compared to monofocal CLs. The P1 and P2 components showed opposite behavior with an increase in amplitudes for multifocal compared to monofocal conditions. VEP data indicated that multifocal presbyopia corrections produce a loss of feedforward activity in the primary visual cortex that is compensated by extra feedback activity in extrastriate areas only, in both early and late visual processing

    Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis

    Get PDF
    In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening

    New onset of Susac syndrome after mRNA COVID-19 vaccine: a case report

    Get PDF
    Susac syndrome (SuS) is a rare immune-mediated disorder, affecting microvessels in the brain, retina and inner ear, leading to central nervous system dysfunction, visual disturbances and sensorineural hearing loss. These events may occur simultaneously or in succession. Since its first description in 1979 by John Susac, about 400 cases have been described; however, SuS is probably underdiagnosed. SuS usually affects young adults between 20 and 40 years (female-to-male ratio of 3.5/1) [1, 2]. Occlusive microvascular endotheliopathy/basement membranopathy represents a disease hallmark, but the pathogenesis is still debated. Infections, diet or medications have been described as possible triggers of autoimmunity [1]. In 2006, a case of SuS after smallpox vaccination was reported. The COVID-19 pandemic has affected over 260 million people and different neurological disorders have been related to both Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and vaccination [3]. Six cases of SuS related to SARS-CoV-2 infection or vaccination have been described: two following SARS-CoV2 infection, one related to ChAdOx1 vaccine, and three after Coronavac vaccine [4]. Here we report the first case of SuS after BNT162b2 mRNA COVID-19 vaccine (Comirnaty®)

    The relation between inflammation and neurodegeneration in multiple sclerosis brains

    Get PDF
    Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease
    corecore