18 research outputs found

    A federated learning-enabled predictive analysis to forecast stock market trends

    Get PDF
    This article proposes a federated learning framework to build Random Forest, Support Vector Machine, and Linear Regression models for stock market prediction. The performance of the federated learning is compared against centralised and decentralised learning frameworks to figure out the best fitting approach for stock market prediction. According to the results, federated learning outperforms both centralised and decentralised frameworks in terms of Mean Square Error if Random Forest (MSE = 0.021) and Support Vector Machine techniques (MSE = 37.596) are used, while centralised learning (MSE = 0.011) outperforms federated and decentralised frameworks if a linear regression model is used. Moreover, federated learning gives a better model training delay as compared to the benchmarks if Linear Regression (time = 9.7 s) and Random Forest models (time = 515 s) are used, whereas decentralised learning gives a minimised model training delay (time = 3847 s) for Support Vector Machine

    Preparation and Adsorption Properties of Magnetic Molecularly Imprinted Polymers for Selective Recognition of 17β-Estradiol

    No full text
    In this paper, magnetic molecularly imprinted polymers (MMIPs) were fabricated on the surface of Fe3O4 by surface molecular imprinting technology, which can selectively adsorb 17β-estradiol (E2). The optimized experiments demonstrated that MMIPs possessed the best adsorption capacity when methanol was used as the solvent and MAA was used as the crosslinking agent, with a molar ratio of E2: MMA: EGDMA as 1:4:50. SEM, FTIR, and XRD were employed to investigate the morphologies of MMIPs and the results demonstrated that the MMIPs that can selectively adsorb E2 were successfully prepared on Fe3O4 particles. The adsorption experiments showed that 92.1% of E2 was adsorbed by the MMIPs, which is higher than the magnetic non-molecularly imprinted polymers (MNIPs). The Freundlich isotherm model was more suitable to describe the adsorption process of E2 by MMIPs. Meanwhile, MMIPs had a better recognition ability for E2 and its structural analogs such as estrone and estriol. The MMIPs still had good adsorption performance after methanol regeneration five times. The prepared MMIPs had the advantages of efficient adsorption ability and high reusability, so they can be applied for selective recognition and removal of E2

    Preparation and Adsorption Properties of Magnetic Molecularly Imprinted Polymers for Selective Recognition of 17β-Estradiol

    No full text
    In this paper, magnetic molecularly imprinted polymers (MMIPs) were fabricated on the surface of Fe3O4 by surface molecular imprinting technology, which can selectively adsorb 17β-estradiol (E2). The optimized experiments demonstrated that MMIPs possessed the best adsorption capacity when methanol was used as the solvent and MAA was used as the crosslinking agent, with a molar ratio of E2: MMA: EGDMA as 1:4:50. SEM, FTIR, and XRD were employed to investigate the morphologies of MMIPs and the results demonstrated that the MMIPs that can selectively adsorb E2 were successfully prepared on Fe3O4 particles. The adsorption experiments showed that 92.1% of E2 was adsorbed by the MMIPs, which is higher than the magnetic non-molecularly imprinted polymers (MNIPs). The Freundlich isotherm model was more suitable to describe the adsorption process of E2 by MMIPs. Meanwhile, MMIPs had a better recognition ability for E2 and its structural analogs such as estrone and estriol. The MMIPs still had good adsorption performance after methanol regeneration five times. The prepared MMIPs had the advantages of efficient adsorption ability and high reusability, so they can be applied for selective recognition and removal of E2

    A general and facile method for preparation of large-scale reduced graphene oxide films with controlled structures

    No full text
    Graphene or reduced graphene oxide films (rGOFs) can be prepared by a number of methods including chemical vapor deposition (CVD), filtration, and spin-coating for a variety of applications. However, controlling their surface morphologies and microstructures to meet the requirements of specific applications is still a great challenge. Here, controlled microstructure of large-size rGOF with good electrical and thermal conductivities as well as high sorption ability is produced through a heating-assisted spray method. By simply tuning the heating temperature, the smooth surface and close-packed layered structure of rGOF can be changed to rough surface and porous structure. Impressively, the rapid preparation of rGOF with area as large as ∼216 cm2 in only 6 h has been successfully achieved, which is significant since normally it takes several days to prepare a rGOF with small area of ∼10 cm2 by using conventional filtration method. More importantly, our rGOFs show promising applications in oil sorption, supercapacitors, and thermally/electrically conductive films.Environment & Water Industry Development Council (EWI)Ministry of Education (MOE)Nanyang Technological UniversityNational Research Foundation (NRF)H.B. and S.W. contributed equally to this paper. This work was supported by the Fundamental Research Funds for the Central Universities (2242017K41006, and 2242016R20013), the National Natural Science Foundation of China (Nos 61274114, 51420105003, and 113279028), China Postdoctoral Science Foundation funded project (Nos 2017M611653), and the “Qianjiang Scholars” program and “Thousand Talent Program” of Zhejiang Province. This work was also supported by MOE under AcRF Tier 2 (ARC 19/15, No. MOE2014-T2-2-093; MOE2015-T2-2-057; MOE2016-T2-2-103) and AcRF Tier 1 (2016-T1-001-147; 2016-T1-002-051), NTU under Start-Up Grant (M4081296.070.500000), and NOL Fellowship Programme Research Grant in Singapore. This research grant is supported by the Singapore National Research Foundation under its Environmental & Water Technologies Strategic Research Programme and administered by the Environment & Water Industry Programme Office (EWI) of the PUB (project No.: 1301-IRIS-47). This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme

    Hippocampal avoidance whole-brain radiotherapy with simultaneous integrated boost in lung cancer brain metastases and utility of the Hopkins verbal learning test for testing cognitive impairment in Chinese patients: a prospective phase II study

    No full text
    Abstract Background This study aimed to evaluate the efficiency of hippocampal avoidance whole-brain radiotherapy with a simultaneous integrated boost (HA-WBRT-SIB) treating brain metastases (BM) and utility of the Hopkins Verbal Learning Test-Revised (HVLT-R) (Chinese version) in Chinese lung cancer patients. Methods Lung cancer patients with BM undergone HA-WBRT-SIB at our center were enrolled. Brain magnetic resonance imaging, The HVLT total learning score, and side effects were evaluated before radiotherapy and 1, 3, 6, and 12 months after radiotherapy. This study analyzed the overall survival rate, progression-free survival rate, and changes in HVLT-R immediate recall scores. Results Forty patients were enrolled between Jan 2016 and Jan 2020. The median follow-up time was 14.2 months. The median survival, progression-free survival, and intracranial progression-free survival of all patients were 14.8 months, 6.7 months and 14.8 months, respectively. Multivariate analysis indicated that male sex and newly diagnosed stage IV disease were associated with poor overall survival and progression-free survival, respectively. HVLT-R scores at baseline and 1, 3, and 6 months after radiotherapy were 21.94 ± 2.99, 20.88 ± 3.12, 20.03 ± 3.14, and 19.78 ± 2.98, respectively. The HVLT-R scores at 6 months after radiotherapy decreased by approximately 9.8% compared with those at baseline. No grade 3 toxicities occurred in the entire cohort. Conclusions HA-WBRT-SIB is of efficiency and cognitive-conserving in treating Chinese lung cancer BM. Trial registration This study was retrospectively registered on ClinicalTrials.gov in 24th Feb, 2024. The ClinicalTrials.gov ID is NCT06289023

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore