45 research outputs found

    Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    This chapter addressed the challenges encountered by a GNSS signal due to multipath propagation. A wide range of correlation-based multipath mitigation techniques were discussed and the performance of some of these techniques were evaluated in terms of running average error and root-mean-square error. Among the analyzed multipath mitigation techniques, RSSML, in general, achieved the best multipath mitigation performance in moderate-to-high C/N0 scenarios (for example, 30 dB-Hz and onwards). The other techniques, such as PT(Diff2) and HRC showed good multipath mitigation performance only in high C/N0 scenarios (for example, 40 dB-Hz and onwards). The other new technique SBME offered slightly better multipath mitigation performance to the well-known nEML DLL at the cost of an additional correlator. However, as the GNSS research area is fast evolving with many potential applications, it remains a challenging topic for future research to investigate the feasibility of these multipath mitigation techniques with the multitude of signal modulations, spreading codes, and spectrum placements that are (or are to be) proposed.publishedVersionPeer reviewe

    Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS) or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS) signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML) delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s), phase(s), and delay(s) of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK-) and Sine Binary Offset Carrier- (SinBOC-) modulated signals is also analyzed in closed loop model with the new Composite BOC (CBOC) modulation chosen for Galileo E1 signal. The simulation results show that the RSSML achieves the best multipath mitigation performance in a uniformly distributed two-to-four paths Rayleigh fading channel model for all three modulated signals

    Analyzing Code Tracking Algorithms for Galileo Open Service Signal

    Get PDF
    The ever-increasing public interest on location and positioning services has originated a demand for higher performance Global Navigation Satellite Systems (GNSSs). Galileo Open Service (OS) signal, part of the European contribution to future GNSS, was designed to respond to the above demand. In all GNSSs, the estimation with high accuracy of the Line-Of-Sight (LOS) delay is a prerequisite. The Delay Lock Loops (DLLs) and their enhanced variants (i.e., feed-back code tracking loops) are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the Binary Offset Carrier (BOC) modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this thesis analyzes feed-back as well as feed-forward code tracking algorithms and proposes a novel algorithm, namely Peak Tracking (PT), which is a combination of both feed-back and feed-forward structures and utilizes the advantages inherent in these structures. In this thesis, the code tracking algorithms are studied and analyzed for Sine BOC (SinBOC) modulated Galileo OS signal for various multipath profiles in Rayleigh fading channel model. The performance of the analyzed algorithms are measured in terms of various well-known criteria such as Root-Mean-Square-Error (RMSE), Mean-Time-to-Lose Lock (MTLL), delay error variance and Multipath Error Envelopes (MEEs). The simulation results show that the proposed PT algorithm outperforms all other analyzed algorithms in various multipath profiles in good Carrier-to-Noise-Ratios (CNRs). The simulation results are compared with the theoretical Cramer-Rao Bound (CRB) and the comparison shows that the delay error variance for PT algorithm approaches the theoretical limit with the increase in CNR. Therefore, the proposed algorithm can be considered as an excellent candidate for implementation in future Galileo receivers, especially when tracking accuracy is a concern. /Kir1

    Performance of a Modified Shear Box Apparatus for Full Scale Laboratory Study of Segmental Retaining Wall Units

    Get PDF
    The paper outlines the performance of a modified large scale shear box apparatus, which is mainly used to execute full scale laboratory study of segmental retaining walls. A typical apparatus has already been adopted by the current ASTM and NCMA test protocols and by literature studying of those test protocols, it is found that protocols recommend a fixed vertical actuator with roller or airbag configuration as a proposed vertical loading assembly. Previous research study demonstrated that vertical loading arrangement greatly influences the interface shear capacity of block systems and fixed vertical actuator with flexible airbag shows better loading arrangement for the blocks which have dilatant behavior. However, airbag arrangement is strenuous and time-consuming loading assembly compared to fixed vertical actuator which increases normal load with shear displacement due to bending of vertical actuator locked with the top block during shear loading. For the drawbacks of fixed vertical loading arrangement, the apparatus used in this study was fully redesigned and modified in terms of normal loading arrangement specially. A moveable vertical loading assembly is used in the modified apparatus which allows the piston movement with the top blocks during shear testing. The results outlined in this paper report that normal load remains constant over the period of shear testing for a wide range of surcharge loading. It could easily be concluded that the modified apparatus might be a better alternative to the existing apparatus used in the test protocols.

    Precise orbit determination of LEO satellites : a systematic review

    Get PDF
    The need for precise orbit determination (POD) has grown significantly due to the increased amount of space-based activities taking place at an accelerating pace. Accurate POD positively contributes to achieving the requirements of Low-Earth Orbit (LEO) satellite missions, including improved tracking, reliability and continuity. This research aims to systematically analyze the LEO–POD in four aspects: (i) data sources used; (ii) POD technique implemented; (iii) validation method applied; (iv) accuracy level obtained. We also present the most used GNSS systems, satellite missions, processing procedures and ephemeris. The review includes studies on LEO–POD algorithms/methods and software published in the last two decades (2000–2021). To this end, 137 primary studies relevant to achieving the objective of this research were identified. After the investigation of these primary studies, it was found that several types of POD techniques have been employed in the POD of LEO satellites, with a clear trend observed for techniques using reduced-dynamic model, least-squares solvers, dual-frequency signals with undifferenced phase and code observations in post-processing mode. This review provides an understanding of the various POD techniques, dataset utilized, validation techniques, and accuracy level of LEO satellites, which have interest to developers of small satellites, new researchers and practitioners.© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    Impact Analysis of Standardized GNSS Receiver Testing against Real-World Interferences Detected at Live Monitoring Sites

    Get PDF
    GNSS-based applications are susceptible to different threats, including radio frequency interference. Ensuring that the new applications can be validated against the latest threats supports the wider adoption and success of GNSS in higher value markets. Therefore, the availability of standardized GNSS receiver testing procedures is central to developing the next generation of receiver technologies. The EU Horizon2020 research project STRIKE3 (Standardization of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation) proposed standardized test procedures to validate different categories of receivers against real-world interferences, detected at different monitoring sites. This paper describes the recorded interference signatures, their use in standardized test procedures, and analyzes the result for two categories of receivers, namely mass-market and professional grade. The result analysis in terms of well-defined receiver key performance indicators showed that performance of both receiver categories was degraded by the selected interference threats, although there was considerable difference in degree and nature of their impact

    Robustness, Security and Privacy in Location-Based Services for Future IoT : A Survey

    Get PDF
    Internet of Things (IoT) connects sensing devices to the Internet for the purpose of exchanging information. Location information is one of the most crucial pieces of information required to achieve intelligent and context-aware IoT systems. Recently, positioning and localization functions have been realized in a large amount of IoT systems. However, security and privacy threats related to positioning in IoT have not been sufficiently addressed so far. In this paper, we survey solutions for improving the robustness, security, and privacy of location-based services in IoT systems. First, we provide an in-depth evaluation of the threats and solutions related to both global navigation satellite system (GNSS) and non-GNSS-based solutions. Second, we describe certain cryptographic solutions for security and privacy of positioning and location-based services in IoT. Finally, we discuss the state-of-the-art of policy regulations regarding security of positioning solutions and legal instruments to location data privacy in detail. This survey paper addresses a broad range of security and privacy aspects in IoT-based positioning and localization from both technical and legal points of view and aims to give insight and recommendations for future IoT systems providing more robust, secure, and privacy-preserving location-based services.Peer reviewe

    A clinical study of arrhythmias associated with acute coronary syndrome: a hospital based study of a high risk and previously undocumented population

    Get PDF
    Background: ACS represents a global epidemic. Arrhythmia in ACS is common. Careful investigation may lead to further improvement of prognosis. Retrospectively analyzed the year- round data of our center. Study was undertaken to analyze the incidence, frequency and type of arrhythmias in ACS. This is to aid timely intervention and to modify the outcome. Identification of the type of arrhythmia is of therapeutic and prognostic importance.Methods: This cross sectional analytical study was conducted in the Department of Cardiology, Apollo Hospitals Dhaka, from January 2019 to January 2020 with ACS patients. Enrolled consecutively and data analyzed.Results: There were 500 patients enrolled considering inclusion and exclusion criteria. Sample was subdivided into 3 groups on the type of ACS. Group-I with UA, Group-II with NSTE - ACS and Group-III with STE - ACS. Different types of arrhythmia noted. Types of arrhythmia were correlated with type of ACS. 500 patients included. Mean age 55.53±12.70, 71.6% male and 28.4% female. 60.4% hypertensive, 46.2% diabetic, 20.2% positive family history of CAD, 32.2% current smoker, 56.4% dyslipidaemic and 9.6% asthmatic. 31.2% UA, 39.2% NSTE-ACS and 29.6% STE-ACS. Type of arrhythmias noted. 22% sinus tachycardia, 20.2% sinus bradycardia, 9% atrial fibrillation, 5.2% ventricular ectopic, 4.8% supra ventricular ectopic, 2.8% bundle branch block, 2.2% atrio-ventricular block, 1% broad complex tachycardia, 0.4% narrow complex tachycardia, 0.2% sinus node dysfunction and 32.2% without any arrhythmia. Significant incidences of arrhythmia detected - respectively 29.8%, 39.2% and 31%, p<0.001.Conclusions: In conclusion, arrhythmias in ACS are common. More attention should be paid to improve their treatment and prognosis
    corecore