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Abstract
The need for precise orbit determination (POD) has grown significantly due to the increased amount of space-based activi-
ties taking place at an accelerating pace. Accurate POD positively contributes to achieving the requirements of Low-Earth 
Orbit (LEO) satellite missions, including improved tracking, reliability and continuity. This research aims to systematically 
analyze the LEO–POD in four aspects: (i) data sources used; (ii) POD technique implemented; (iii) validation method 
applied; (iv) accuracy level obtained. We also present the most used GNSS systems, satellite missions, processing proce-
dures and ephemeris. The review includes studies on LEO–POD algorithms/methods and software published in the last two 
decades (2000–2021). To this end, 137 primary studies relevant to achieving the objective of this research were identified. 
After the investigation of these primary studies, it was found that several types of POD techniques have been employed in 
the POD of LEO satellites, with a clear trend observed for techniques using reduced-dynamic model, least-squares solvers, 
dual-frequency signals with undifferenced phase and code observations in post-processing mode. This review provides an 
understanding of the various POD techniques, dataset utilized, validation techniques, and accuracy level of LEO satellites, 
which have interest to developers of small satellites, new researchers and practitioners.

Keywords Precise orbit determination · Low-Earth Orbit · Global Navigation Satellite Systems · CubeSats · Remote 
sensing · Earth observation · Validation methods · Systematic literature review · Satellite tracking

Introduction

Orbit determination of satellites, from the first man-made 
satellite, has traditionally used several observations over 
the years, eventually from cameras, radio Doppler tracking 
systems and radio transmissions. The first application of the 
Global Navigation Satellite System (GNSS) was in the pre-
cise determination of the position of fixed ground receivers 
to aid the study of the dynamics of the earth’s surface. This 
led to the first application of the Global Positioning System 
(GPS) in the orbit determination of satellites (Mur and Dow 
1997). Later on, the application of GPS to the precise orbit 
determination (POD) to other low-earth-orbit (LEO) satel-
lites was implemented. With these advancements, GNSS 
receivers have now been designed to meet the requirements 
for POD and have been applied to many satellites requiring 
accurate knowledge of their orbits depending on the objec-
tives of their missions (ESA 2021).

The measurement environment, the technique used for 
POD processing and the mission application of the satellite 
can affect the performance of the POD process. Furthermore, 
besides accuracy, a growing interest has been in reducing 
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latency in achieving a precise solution, which benefits many 
end-users as it provides faster access to the required orbit 
solutions (Gebre-Egziabher and Gleason 2009).

The development of many new space applications in the 
area of navigation, telecommunication, remote sensing and 
earth observation systems can benefit from the precise track-
ing of satellite orbits using onboard GNSS receiver data. 
Future trends show that LEO satellites have the potential 
to deliver several benefits over medium earth orbit (MEO) 
satellites in terms of navigation, precise point positioning 
and timing (PNT), as well as location-enabled communica-
tions (Prol et al. 2022). This is because LEO satellites are 
at significantly lower altitudes than MEO and geosynchro-
nous (GEO) GNSS satellites and operate at higher speed 
(Borthomieu 2014; Peterson 2003).

Existing literature review (Allahvirdi-Zadeh et al. 2021b) 
mainly covers the state-of-the-art POD based on undiffer-
enced GNSS observations. A work-in-progress review paper 
(Selvan et al. 2021) made a general review on the differ-
ent POD techniques of LEO satellites. To the best of the 
author's knowledge, there is no existing systematic literature 
review on POD of LEO satellites. Therefore, we performed 
a systematic review based on primary studies making use of 
the procedure suggested by PRISMA (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) (Kitch-
enham 2004). The review did not focus on the theoretical 
background behind POD as stated in several books (for 
example, Montenbruck et al. 2002). Instead, a clear view 
on various POD and its associated results is provided by 
summarizing factors driving the POD solution. The review 
is based on the context of four research questions, which 
were carefully selected to fulfill the aim of the systematic 
review in identifying the data sources used, POD technique 
implemented, validation method applied, and accuracy level 
obtained. Table 1 provides a list of research questions used 
in the review process. The summarized results not only pro-
vide a clear picture on which orbit model, observation types, 
estimators, processing procedure and validation method have 
performed better, but it also shows categories which require 
further improvements. Therefore, the review helps research-
ers focus on areas that need further improvements and pre-
sents the POD strategies for the highest accuracy.

From the primary studies, we identify the data sources 
(real, simulated, or pre-processed), instruments (GNSS, 
non-GNSS or hybrid), satellite mission, GNSS systems 
and ephemeris used (RQ1). This will help in making deci-
sions concerning the type of dataset, instruments, satellite 
mission, GNSS systems and ephemeris being used by the 
practitioners. Next is to analyze the different POD meth-
ods, algorithms or software used (RQ2). This will help in 
understanding the orbit model (kinematic, dynamic, reduced 
dynamic), estimator (least square, Kalman filter, software) 
and the processing procedure (real-time, post-processing) 
carried out. In the next research question (RQ3), the different 
validation methods of the POD solutions used in the pri-
mary studies are identified. Finally, in RQ4, accuracy levels 
obtained based on the adopted POD techniques, instruments 
and products are analyzed. The following sections provide 
the outcomes of this review and discuss the findings based 
on the RQs which are also summarized as a table in the 
document “Supplement 2.”

Data sources used in POD (RQ1)

The dataset used has an influence in estimating POD. This 
section shows an overview of the most common data sources 
used for POD.

Instruments

We have classified the data sources derived from three main 
categories of instruments, as follows: GNSS, Non-GNSS 
and Hybrid. The distribution in percentage of the studies 
that used each of those selected categories of instruments is 
illustrated in Fig. 1.

GNSS refers to the experiment from a GNSS receiver 
onboard the LEO satellite or simulated GNSS data using 
a simulator. GNSS data were used in 105 (76.6%) primary 
studies.

Non-GNSS refers to data other than that from the GNSS 
receiver utilized in the POD. This includes data from SLR, 
DORIS as well as accelerometer and attitude data. Non-
GNSS data were used in 16 (11.7%) primary studies. Certain 
primary studies made use of a combination of two or more 

Table 1  Research questions

RQ Research questions Motivation

RQ1 Which data sources have been used for LEO–POD? Identify the datasets used as input for the LEO–POD determination, including 
instruments and products

RQ2 Which POD techniques have been used? Identify the algorithms, methods or software commonly used in LEO–POD 
determination

RQ3 Which kind of validation methods has been used? Identify the methods used for the validation of LEO–POD determination
RQ4 What accuracy levels have been obtained? Identify the POD performance depending on the adopted techniques, instruments 

and products
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non-GNSS-based observations to estimate the precise orbits 
of the satellite. In addition, apart from the listed categories 
of data sources, there are other approaches implemented by 
the primary studies in POD. This includes studies utilizing 
the radio interferometer observations (Sakamoto and Nishio 
2011) and inter-satellite links (Li et al. 2019a). These stud-
ies did not use any onboard GNSS data from the receiver or 
any data from the traditional non-GNSS-based technique. 
They used completely different approaches including inter-
ferometry-based satellite orbit estimation and inter-satellite 

link-based estimation of satellite orbits. For the sake of sim-
plicity, these studies were also categorized as non-GNSS in 
Fig. 1.

Hybrid refers to combination of both GNSS and non-
GNSS data utilization for the POD of the satellite. For 
example, data from a GNSS receiver, DORIS and SLR 
are utilized in the determination of the satellite orbits. 14 
(10.2%) primary studies used hybrid-based observations. 
It is interesting to note that 2 (1.5%) studies made use of 
GNSS and hybrid data at the same time in their studies on 
POD estimation (Svehla and Rothacher 2003; Jäggi et al. 
2005). These studies were categorized as GNSS + Hybrid in 
Fig. 1. Table S8 in the document “Supplement 1” provides 
information on the categories of instruments used by the 
primary studies.

To quantify the last trends on the POD techniques, Fig. 2 
shows the number of the studies based on the year of publi-
cation. With the launch of satellites such as TOPEX/Posei-
don, GRACE, CHAMP and GOCE, more research work 
based on these satellite data is carried out. The satellite mis-
sions’ section will provide more detail on the POD carried 
out for different satellite missions.

Fig. 1  Percentage of studies depending on the type of instrument

Fig. 2  Distribution of the types of instruments used in the primary works in terms of the year of publication
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Satellite missions

From the primary studies, POD estimation was performed 
based on the instrumental data (GNSS, non-GNSS and 
hybrid) from various LEO satellite missions. 32 studies 
utilized GRACE satellite mission data, 24 studies used 
CHAMP data and 12 made use of HY-2A. Other satellite 
missions include GOCE, TOPEX/Poseidon, Swarm, Jason-
1. Certain studies utilized data from two or more satellite 
missions and provided a comparison of accuracy levels 
reached for each satellite mission.

Experimental, simulated or pre‑processed data

Most of the LEO satellites are equipped with a GNSS 
receiver for missions that require the orbital knowledge of 
the satellite. Hence, experimental or real onboard GNSS 
receiver data was used to estimate precise orbit of the sat-
ellites. Experimental data from DORIS and SLR are also 
utilized in estimating POD. In addition, primary studies also 
focused on retrieving onboard GNSS data on the ground 
and pre-processing them prior to the POD of the satellite. 
Meanwhile, simulated multi-GNSS observations are gen-
erated using GNSS simulator to estimate orbital solutions. 
From the primary studies, 113 (82.48%) studies used real or 
experimental data, 6 (4.38%) studies used simulated data, 
2 (1.46%) studies used real and simulated data, while 16 
(11.67%) studies used pre-processed data. Table S9 in the 
document “Supplement 1” provides information on the type 
of data used by the primary studies.

GNSS systems and ephemeris

The GNSS Systems used in the primary studies include 
GPS only 79% (109 studies), BeiDou (BDS) only 0.73% (1 
study), GPS + BDS 6.6% (9 studies), GPS + Galileo (GAL) 
0.73% (1), and GPS + simulated GPS, GLONASS and BDS 
0.73% (1 study). Each of these GNSS systems have their 
own products to describe the orbit trajectory by ephemeris. 
The ephemeris products are categorized as broadcast and 
precise. The broadcast product, which is embedded to the 
system signal, allows the description of the GNSS orbits in 
real-time at a metric-level accuracy. Considering the stud-
ies using GNSS systems, around 9% have used broadcast 
ephemerids. The remaining 91% of studies have used precise 
products (ultra-rapid, rapid, and final) provided by the IGS 
analysis centers.

POD techniques (RQ2)

Several types of POD techniques were applied in the pri-
mary studies. For practical convenience, different techniques 
are organized based on four characteristics: (1) orbit model, 

(2) observations, (3) estimator and (4) processing procedure. 
Table 2 shows the main topics of each category. Figure 3 
shows the number of studies using each of these catego-
ries. A clear trend is observed for techniques using reduced-
dynamic orbits, least-squares solvers, dual-frequency (DF) 
signals with undifferenced (UD) phase and code observa-
tions, in post-processing mode. Detailed information about 
the POD techniques in each of the primary studies is shown 
in the next subsections, with the corresponding meaning of 
the abbreviations.

Orbit model

The orbit models define the rules to govern the satellite 
motion within the estimated trajectory. The three main 
methods used by the primary studies are kinematic, dynamic 
and reduced dynamic. The kinematic orbit model can be 
related to a point positioning method that determines the 
orbit trajectory with a purely geometrical relation. The LEO 
3D coordinates are obtained epoch-by-epoch as independent 
solutions. The main output is epoch-wise ephemeris with 
discrete time solutions. The kinematic model provides 3D 
coordinates, ambiguities and receiver clocks when using 
GNSS data. Contrary to kinematic orbit, the dynamic model 
depends solely on an equation of motion governed by physi-
cal laws. Force models are used to represent the gravitational 
and non-gravitational dynamic parameters. Main parameters 
are related to the gravitational forces, atmospheric drag, 
solar radiation pressure and earth radiation pressure. As a 
result, the purely dynamic POD provides continuous posi-
tions, even if the initial positions have data gaps. Since it is 
difficult to determine an ideal dynamic orbit for the heavily 
perturbed environment of LEO satellites, uncertainties and 
perturbations vary significantly depending on the adopted 
force models. The orbit errors, therefore, grow with the sat-
ellite arc length. The force models have been significantly 
improved in the last few years since the GRACE and GOCE 
gravity missions were successfully used to determine static/
temporal gravity field models (Förste et al. 2011). Neverthe-
less, the reduced-dynamic model is typically used to attenu-
ate the unmodeled or mismodeled force mode errors. The 
reduced-dynamic technique combines the kinematic and 

Table 2  Classification of the POD methods, observations and algo-
rithms

Category POD technique

Orbit model Kinematic, Dynamic and Reduced-dynamic
Observation GNSS pseudorange and carrier phase, 

Doppler-shift, SLR normal point data
Estimator Least square, Kalman filter, external software
Processing procedure Real-time, post-processing
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dynamic models by introducing a stochastic process in the 
representation of the trajectory. The residual of the estima-
tions is adjusted within the orbit determination to help the 
compensation of remaining force model deficiencies. Most 
often, empirical accelerations are included in the system at 
the radial, along-track, and cross-track (RAC) directions. 
As a disadvantage, the reduced-dynamic solutions need 
denser and geometrically stronger tracking data. Therefore, 
the reduced dynamic orbits are less sensitive to dynamic 
modeling errors but more to measurement errors (Guo et al. 
2014). Table 3 provides the advantages and disadvantages 
of the three orbit models.

Dramatic improvements in gravity field modeling have 
been done in the latest decades (Nerem et al. 1994; Pail et al. 
2011; Tapley et al. 2005). Hence, the remaining deficiencies 
in the dynamic model are mostly related to the non-conserv-
ative forces acting on the satellite surface due to atmospheric 
drag and radiation pressure. An efficient non-gravitational 
force modeling can produce a dynamic orbit solution with 
an accuracy of 1 cm (Mao et al. 2021). Density temperature 
model (DTM), box-wing model and Albedo and Infrared 
model are commonly used models to calculate the atmos-
pheric drag, solar radiation and earth radiation pressure, 
respectively. Other force models, such as static and temporal 

Fig. 3  Distribution of the 
studies based on the used POD 
techniques

Table 3  Advantages and disadvantages of the orbit models

Model Advantages Disadvantages

Dynamic Dynamic method is preferred to limit the dependency of the 
orbit accuracy based on measurement gaps

Better suited to smooth through noisy tracking data

Uncertainties in the model or mismodeled dynamics cause 
large errors

Higher accuracy model means heavier operation burden to the 
onboard processor

Reduced Dynamic Empirical accelerations compensate the imperfect orbit 
model

Employs the kinematic-based geometric information and the 
dynamic information of the satellite motion

Reduced-dynamic model approaches can be impacted by both 
the accuracy of the dynamic model parameters and meas-
urement model errors

Measurement model errors should be corrected or estimated 
to reduce overall orbit errors

Needs denser and geometrically stronger tracking data
Kinematic Requires no a priori knowledge of spacecraft motion and 

relies on the GNSS observations only
Computational complexity is significantly reduced
Independent of the gravity field and of all the non-conserva-

tive forces acting on the satellite

It is sensitive to measurement outliers, bad viewing geometry 
and errors in the GNSS measurements

Antenna reference point, phase center offset and phase center 
variation have larger impacts in the accuracy compared to 
the other techniques

No position estimates can be made when there are data out-
ages
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force models, must be considered for LEOs. EIGEN-6C, 
EGM 2008, JGM-3, GGM05C are the gravity models 
used along with surface force modeling to reduce the error 
sources (Choi et al. 2010b; Flohrer et al. 2011; Gao et al. 
2015; Guo et al. 2014; Kang et al. 2006, 2020; Kong et al. 
2014, 2018). On the other hand, the kinematic model relying 
only on GNSS measurements is sensitive to poor geometry, 
measurement errors and noise (Byun 2003; Chen et al. 2017; 
Li et al. 2019b), while the reduced-dynamic technique is 
limited by the accuracy of the dynamic model parameters 
discussed and measurement model errors (Allahvirdi-Zadeh 
et al. 2021b; Zelensky et al. 2010).

Observations

Most popular observations used in POD determinations 
allow range-based positioning techniques using distance 
measurements. Onboard receivers of the Doppler Orbit-
ography and Radio-positioning Integrated by Satellite 
(DORIS) are one of the most traditional techniques. An 
antenna mounted on the satellite is pointed toward the earth 
to receive radio signals emitted by the ground stations. The 
frequency shift caused by the Doppler effect is the main 
observation used to determine the range rate between the 
ground stations and LEO satellites.

Another relevant type of observation is provided by Sat-
ellite Laser Ranging (SLR). In SLR, ground stations con-
tinuously emit laser pulses in the optical spectrum and the 
LEO satellites are equipped with retroreflectors to reflect 
the laser pulse back. The basic observation is twice the laser 
time of flight between the ground station and a satellite. The 
observations are distributed as normal point data, contain-
ing a time stamp, range values, and precision. Due to the 
high-precise measurements, SLR is one of the main means 
of external validation of the POD estimations.

The last type of observation has gradually become the pri-
mary source of precise orbit determination for many satellite 
missions. The pseudorange observations provided by GNSS 
allow range-based positioning with a few meters of preci-
sion. The precision of a few meters can pose a crucial issue 
to the POD. Therefore, more sophisticated GNSS techniques 
also incorporate carrier phase measurements together with 
specific combinations. The basic pseudorange and phase 
combination from the primary studies are the single-fre-
quency (SF), double-frequency (DF), triple-frequency (TF), 
undifferenced (UD), single-difference (SD), double-differ-
ence (DD) and triple-difference (TD). Transmitting with DF 
and TF helps to eliminate ionospheric effects. UD is the raw 
(unprocessed) carrier phase and pseudorange observables 
from an onboard receiver. SD approaches utilize the differ-
ence between GNSS observations of two distinct receivers 
or time. DD refers to a combination of two SDs and TD is a 
combination of two DDs. The formed SD, DD and TD can 

be obtained between LEO and ground stations, as well as 
LEO and other LEO satellites.

Estimators

The estimation process of 3D satellite coordinates, veloci-
ties, accelerations and the drag forces are typically pro-
cessed by Kalman filters (KF) and least squares (LSQ). 
Variants of the Kalman filter used in the primary studies 
are the extended Kalman filter (EKF), unscented Kalman 
filter (UKF) and Sequential Kalman filter (SKF). The POD 
software used by the primary studies include JPL GIPSY/
OASIS, Van Martin Systems, Inc (VMSI), National Uni-
versity of Defense Technology Orbit Determination 
Toolkit (NUDTTK), Position And Navigation Data Analyst 
(PANDA), Navigation Package for Earth Orbiting Satellites 
(NAPEOS), BAHN, GEODYN, SATODS, BERNESE, 
EPOS-OC, GUTS, RTODLEO, GPS High-Precision Orbit 
Determination Software Tools (GHOST) and SHORDE-
III. Table S10 in the document “Supplement 1” provides 
detailed information on various POD software used by the 
primary studies.

Processing procedure

The processing procedure of POD can be in real-time or 
post-processed, depending on the type of application. 
Real-time processing is essential in formation flying 
(D’Amico et al. 2012; Leung and Montenbruck 2012), 
satellite altimetry (Calman and Manzi 1989; Jayles et al. 
2010), proximity operations (Mahajan et al. 2013) and 
geo-referencing (Wang et al. 2015). The post-processed 
procedure is carried out for applications such as radio 
occultations (Hwang et al. 2011b; Innerkofler et al. 2020; 
Montenbruck et al. 2013) and synthetic-aperture radar 
(SAR) missions (Wermuth et  al. 2012; Choi and Lee 
2011). The real-time processing is done for the onboard 
orbit determination procedure, where the POD solution 
is obtained in real-time. In post-processed procedure, 
data collected from the satellite mission on the ground 
are used for orbit determination. Depending on the appli-
cation, POD solutions may be available with different 
latencies, from several hours to several days. The accu-
racy levels generally reached between meters to millim-
eter levels, while in real-time orbit determination proce-
dure, the accuracy levels range from meter to centimeter 
levels. Most primary studies used post-processing orbit 
determination procedures to improve POD accuracy. The 
real-time POD process needs further improvements in the 
way GNSS ephemeris are obtained in real-time since the 
practical implementation is hindered by the limited avail-
ability of suitable modems or GNSS receivers for acquir-
ing such correction data on LEO platforms (Montenbruck 
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et al. 2022). For instance, the LEO satellites can track 
broadcast ephemeris in real-time while precise ephemeris 
requires internet access. Out of 137 primary studies, only 
22 carried out POD based on real-time orbit determina-
tion, while two implemented real-time and post-processing 
orbit determination procedures. Table S11 in the document 
“Supplement 1” shows the processing procedure adopted 
by the primary studies.

Validation methods (RQ3)

The orbit solution estimated for the LEO satellite using 
POD technique or software needs to be validated. There 
are numerous ways of validating the orbit solutions esti-
mated by the POD technique. An independent orbit vali-
dation process can be set up using the SLR station track-
ing measurements. In this context, some primary studies 
offered comparisons between their external POD pro-
cessing solutions based on either GNSS or DORIS (non-
GNSS) data with that obtained from SLR. However, it is 
important to validate the orbital products independently. 
Hence, SLR is used as a standard technique for validating 
the POD solution when the retroreflectors are installed 
along the sides of the satellite.

The external products offered by providers such as 
NASA Jet Propulsion Laboratory (JPL), Center National 
D’Etudes Spatiales (CNES), Delft Institute for Earth-
Oriented Space Research (DEOS), German Space Opera-
tions Center (DLR), International GNSS Services (IGS) 
and The German Research Center for Geosciences (GFZ) 
are used for validation purposes. The products include 
CNES precise orbits, rapid science orbit (RSO), precision 
orbit ephemeris (POE), JPL post-science orbits (PSO), JPL 
ephemeris, IGS orbit products (ultra-rapid, rapid and final) 
and GFZ post-processed science orbits (PSO). Other vali-
dation methods include orbit overlap differences (OODs), 
K-band, orbit fits, orbit comparison with GPS derived 

orbits, NORAD TLE, Radar and intercomparison using 
software packages.

Accuracy of the POD studies (RQ4)

The accuracy performance of the different POD techniques 
and software used by the primary studies for orbit deter-
mination of LEO satellites is presented in this section. The 
accuracy of the POD algorithm for each study was expressed 
either in RMS, standard deviation, radial, cross-track, along-
track and percentage improvements. We have extracted an 
average accuracy value for each study with metrics in 3D 
RMS (1-sigma). However, certain studies provided accuracy 
in radial direction (1-sigma), and 1D RMS (1-sigma). The 
overall accuracy among all the reviewed studies based on 
3D RMS (1-sigma) is presented in Fig. 4. This figure shows 
the number of studies that have obtained accuracy lying at a 
certain interval. Studies with metric accuracy were excluded 
from the analysis for better visualization.

Our investigation shows that most works have obtained 
great accuracy in the LEO orbit determination. Around 8.2% 
of the studies have obtained less than or equal to centim-
eter-level accuracy, about 13% have obtained an accuracy 
between 1 to 2 cm, and about 14% have obtained 2 to 3 cm. 
There is also a predominant trend with lower accuracy, 
where 14% of the works have obtained a POD accuracy lying 
around 5 cm.

The performance difference among the studies exists due 
to several reasons. To detect the main reasons, the next sub-
sections show details considering five categories: (1) orbit 
model, (2) ephemeris, (3) receiver frequency, (4) type of 
observations and (5) estimators.

Orbit model

Figure 5 presents the median value of the POD accuracy of 
the primary studies when categorized depending on the orbit 
model. As previously mentioned, we have identified three 
main models: kinematic, dynamic and reduced dynamic. 

Fig. 4  Average accuracy of the 
related works
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Here, we include an additional label, named mixed, to rep-
resent the studies that have used more than one model in 
their work. The accuracy levels based on the orbit models 
mostly vary between 3.75 and 13 cm, while the mixed model 
comparison studies produce the best results. Purely kine-
matic solutions provided less accurate results. It is relevant 
to notice that we have identified an interesting pattern when 
correlating the model accuracy with the number of studies 
using the specific model. To understand this pattern, it is 
necessary to compare the accuracy shown in Fig. 5 with the 
number of studies shown in Fig. 3. In this comparison, it is 
possible to see that the kinematic model was less used and 
less accurate. The dynamic model is proportionally more 
used and more accurate in comparison with the kinematic. 
The reduced dynamic is the most used and the most accurate 
among the three models.

Ephemeris

To show the level of accuracy one can obtain when using 
precise or broadcast GNSS ephemeris, Fig. 6 (left) shows the 
median values of accuracy for these two distinct categories. 
As it can be seen, the median value considering all studies 
with broadcast ephemeris lies around 40 cm, while precise 
ephemeris lies around 4 cm. This clear difference is well 
justified since broadcast ephemeris allows a GNSS satellite 
orbit description within meters of accuracy, while precise 
products describe the GNSS satellite orbits within a few 
centimeters. The number of studies shown in Fig. 6 (right) is 
also proportional to the accuracy; about 91% of studies use 
precise orbit products, while 9% use broadcast data.

Frequency

Figure 7 (left) shows the median accuracy of the LEO/
POD solutions when using single-frequency (SF) or 

dual-frequency (DF) GNSS receivers. As expected, great 
improvement in accuracy is observed in the studies using 
dual frequency. Indeed, single-frequency solutions presented 
a median accuracy of 75 cm, while dual-frequency solutions 
achieved 4.25 cm. The number of studies shown in Fig. 7 
(right) is also proportional to the accuracy; 89.6% of studies 
related to POD determination with dual-frequency receivers, 
while the remaining 10.4% are related to single-frequency 
solutions.

Observations

Regarding the obtained accuracy depending on the types 
of observations, Fig. 8 shows a comparison between the 
UD, SD, DD, TD, DORIS and SLR observations. We have 
excluded all metric solutions from the sample for better com-
parison. Overall, a very compatible accuracy between the 
distinct types of observations can be observed.

The best accuracy among the GNSS techniques was 
obtained when employing DDs and TDs, reaching 2.5 cm 

Fig. 5  Median accuracy of the primary studies when classified 
depending on the orbit models

Fig. 6  Median accuracy (left) and the number of studies (right) of 
the primary studies when classified, depending on the type of GNSS 
ephemeris

Fig. 7  Median accuracy and number of studies based on the type of 
GNSS frequency used
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and 2.4  cm, respectively. The UD and SD approaches 
are not that far, providing an accuracy of 6 cm and 7 cm, 
respectively. The best accuracy was obtained by techniques 
employing TD observations, reaching up to 2.4 cm in the 
median. Doppler-based observations obtained an accuracy of 
7.7 cm. As for SLR observations, a non-expected accuracy 
of 9 cm was obtained. Indeed, SLR measurements are known 
to be very precise. Their solutions are very often used as the 
benchmark for the POD validations. The accuracy values 
obtained in UD, SD, DD, TD and DORIS were evaluated 
using the SLR measurements as a reference in many works 
of the primary studies. The problem, however, is due to the 
challenge of validating the method used as a reference. The 
primary studies have used distinct techniques to validate the 
SLR results in a way that the obtained accuracy may be 
intrinsic to the validation methods.

The number of studies (Fig. 3) of the linear combinations 
does not follow the same pattern as observed in the previ-
ous analysis. Most studies (around 62%) were conducted 
using UD observations, which are not the most accurate. A 
possible justification is that the UD approaches are much 
more simplified techniques than the relative positioning 
using DD or TD and much more popular than DORIS or 
SLR. As a user, GNSS point positioning techniques using 
UD observations require measurements from a unique GNSS 
receiver on LEO, while relative techniques use differenced 
observations formed between multiple GNSS receivers. The 
PPP technique using UD is faster compared to DD approach. 
However, while the GPS satellite orbit and clocks must be 
determined in PPP, the DD approach reduces the orbit and 
clock-related errors from the observation model due to the 
DD formed between LEO satellite and a worldwide network 
of GNSS receiver stations on the ground. When multiple 
studies are considered together, it becomes apparent that the 
impact of multipath and satellite visibility on DD combina-
tions is comparatively less significant than the errors arising 
from orbit and clock inaccuracies in UD measurements. For 

instance, the most accurate solutions given by BERNESE 
require forming DDs between the target LEO satellite and 
GNSS receiver stations. This adds a relevant burden on the 
computational process. Obtaining around 6 cm in POD 
determinations seems to be accurate enough for many appli-
cations, so, understandably, many studies prefer not adding 
relevant complexity to UD POD technique.

Estimator

As for the accuracy considering the estimators, Fig. 9 shows 
the median values of the primary studies. An evident better 
accuracy is obtained when using batch solutions given by 
least squares or a specific software compared to Kalman 
filter estimators. The accuracy of 4 cm and 4.8 cm by least 
squares and software, respectively, is about eight times 
smaller than the ones provided by Kalman filters. This 
occurs because Kalman filters are mainly applied in real-
time processes, while least square uses post-processed prod-
ucts. Therefore, the presented analysis mainly reflects the 
difference between post-processing and real-time solutions. 
As expected, post-processing solutions are more accurate.

Discussion

The POD accuracy requirements vary depending on the sat-
ellite missions. For example, in remote sensing satellite mis-
sions producing optical images, the orbital accuracy can be 
in tens of meters (Chung et al. 2012). ALOS satellite mission 
requires orbit determination accuracy within meter level for 
precise mapping using satellite imagery (Nakamura et al. 
2007). Remarkable advances in POD were mainly driven 
by the various satellite altimetry missions such as Topex/
Poseidon, Jason-1, GRACE, sentinel-3 and sentinel-6. A 
radial orbit accuracy in centimeters is required to map the 
altimetric measurements of sea-surface heights (Haines et al. 

Fig. 8  Median accuracy of the primary studies when classified 
depending on the observations

Fig. 9  Median accuracy of the primary studies when classified 
depending on the estimator methods
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2011). Further, centimeter-level satellite orbit can ensure 
high geolocation accuracy of TerraSAR-X and TanDEM-X 
missions and change detection on the earth’s surface with 
ICEYE’s SAR satellites (Hong et al. 2017; ICEYE 2022). 
Proba-3 satellites require a millimeter-level accuracy for 
high-precision formation flying to achieve scientific corona-
graphy (Enderle et al. 2019). With LEO-based space systems 
already offering a wide range of services, satellite develop-
ers are focused on new satellite missions with a growing 
need for even better POD accuracy levels (Prol et al. 2022).

Dynamic techniques can be challenging to fit the require-
ments of satellite missions because it relies on external prod-
ucts which do not represent the real perturbation environ-
ment. Most of the studies that implemented dynamic POD 
obtained lower accuracy due to this issue (Chiaradia et al. 
2003, 2013; Choi et al. 2010a; Feng 2000; Zandbergen et al. 
2003). The lower accuracies were also observed for studies 
that implemented real-time processing, including limitations 
due to the accuracy of GNSS satellite orbits and clocks, 
broadcast ephemeris and GNSS receiver capabilities.

The uninterrupted geometric information offered by the 
GNSS data drove the emergence of the kinematic method. 
It is independent of any prior mechanical model such as 
gravitation field, atmospheric drag and solar radiation pres-
sure. It requires no prior knowledge of spacecraft motion and 
relies fully on GNSS observations. With this, centimetric 
accuracies can be observed. However, the limitation here is 
the error/gaps in the GNSS measurements and observations. 
When this is the case, the accuracies observed are lower 
when compared to the dynamic POD technique, as seen in 
the document “Supplement 2”.

With the limitation of dynamic and kinematic techniques, 
the use of both the geometric information and the informa-
tion of the satellite motion has improved the POD accuracy. 
This led to the emergence of the reduced-dynamic model. 
Reduced-dynamic model by adjusting the weight of the 
information derived from the geometric and orbit dynamic 
improves the orbit quality. It also absorbs the force model 
errors by estimating pseudo-stochastic parameters. This 
technique was implemented by most of the studies used in 
this review (see Fig. 3) and fits to the requirements of several 
satellite missions. It shows the most accurate orbits when 
compared to dynamic and kinematic, as illustrated in Fig. 5.

In general, from the selected studies, we could observe 
that the LEO satellites with lower altitudes (less than 
600 km) have an average worse accuracy than higher alti-
tudes (greater than 600 km). This is expected as the higher 
orbits require simplified force models. However, there are 
several cases where the accuracy of LEO satellites below 
600 km had accuracies better than 10 cm. The analysis 
shows that proper force modeling, such as estimating the 
drag parameter using a shorter interval, can produce a high-
precision orbit result even for low-altitude LEO satellites. 
This has been seen in many low-altitude LEO missions, 
such as Swarm (Van Den Ijssel et al. 2015). Ambiguity 
resolution (AR) also plays a major role in GPS-based POD 
accuracy. The studies show that the ambiguity-fixed POD 
solution provides higher accuracy, around 15–27% precision 
improvement, compared to the ambiguity-float solution (Li 
et al. 2019b; Montenbruck et al. 2018b; Yang et al. 2015). 
With respect to observations, UD-based solution reached a 
median accuracy of 6 cm compared to DD and TD accuracy 
of 2.5 and 2.4 cm, respectively, as seen in Fig. 8. However, 
some of the studies showed that using UD observations for 
POD can obtain better accuracy of 1 cm (3D-RMS) when 
highly accurate techniques are used (Montenbruck et al. 
2018b, c). Similarly, observations using SLR have a median 
accuracy of 9 cm. However, Noomen (2001) implemented a 
POD technique using SLR which can obtain an accuracy of 
less than 1 cm (radial). Overall, the POD strategies for the 
highest accuracies, less than or equal to a centimeter-level 
(3D-RMS), and various factors driving them are summa-
rized in Table 4.

Limitations of the review

A limitation of this review is that only 111 out of the 137 
primary studies performed a validation of the results for 
their implemented POD. Moreover, while performing 
POD, each primary study used different experimental set-
tings, including datasets, POD methods, algorithms, soft-
ware and data pre-processing methods. Although we have 
exhaustively searched all the stated digital search libraries, 
there might still be a possibility that a study suitable for 
this review may have been left out. While performing this 
review, we assumed that all the studies being examined are 

Table 4  POD strategies for the highest accuracies

Paper IDs Mission Accuracy (3D RMS) Data Source Techniques

P10, P38, P67, P88, P94, P95, 
P133

GRACE
TerraSAR-X and TanDEM-X
Sentinel3A/3B
SWARM

1 cm GPS systems
UD and DD observations
Dual frequency
Precise ephemeris

Reduced-dynamic model
Post-processing procedure
Least-squares estimators
GHOST and BERNESE 

software
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impartial; thus, when this is not the case, it may pose a threat 
to this study.

Conclusion and future guidelines

This systematic review investigated POD of LEO satellites 
aiming to provide an understanding of the various methods 
applied for POD of LEO satellites to developers of small 
satellites and new researchers in the field. Our investigation 
has shown that several data sources, POD techniques and 
validation methods with different accuracy levels have been 
extensively studied and evaluated in the last years. To ensure 
that our systematic review is valuable, four main research 
questions were defined. The main findings can be summa-
rized as follows.

RQ1 (Which data sources have been used for 
LEO–POD?): High-quality datasets have been used in esti-
mating and validating the POD for LEO satellites. This 
review has revealed that most of the datasets used for POD 
estimation are GNSS data, implying that fewer studies used 
non-GNSS and hybrid data. The GNSS systems used by 
most of the primary studies include GPS, BeiDou, Gali-
leo and their combinations. Only one study used simulated 
GLONASS (Hauschild and Montenbruck 2021).

RQ2 (Which POD techniques have been used?): Among 
the POD models, algorithms, methods and software that 
have been applied in estimating the POD for LEO satellites, 
a clear trend was observed for techniques using reduced-
dynamic model, least-squares solvers, dual-frequency (DF) 
signals with undifferenced (UD) phase and code observa-
tions in post-processing mode. This is a very prominent 
method used for precise orbit determination of LEO sat-
ellites since it offers reasonable accuracy without exten-
sive complexity. Researchers are encouraged to conduct 
more studies making use of rarely used POD methods to 
strengthen the evidence on their performance further. The 
highlighted methods in a few of the studies are the GNSS 
techniques using single-frequency receivers, broadcast 
ephemeris, real-time products and DORIS and SLR systems.

RQ3 (Which kind of validation methods has been used?): 
Regarding validation, it has been seen that most of the pri-
mary studies made use of SLR data. A few studies, how-
ever, have validated the SLR data itself. Overall, the GNSS 
and DORIS techniques produced 2.4 cm and 7.7 cm median 
accuracy in 3D-RMS (1-sigma), respectively, while SLR-
based POD techniques have provided an accuracy of 9 cm. 
Although some studies achieved an accuracy of up to 1 cm 
in the radial direction for both DORIS and SLR, researchers 
are encouraged to conduct more studies for a proper perfor-
mance evaluation of the SLR-based POD techniques.

RQ4 (What accuracy levels have been obtained?): We 
have identified that the most prominent POD techniques 

allow an orbit determination within a few centimeters of 
accuracy. This accuracy was obtained in distinct studies 
conducted by different authors and institutes, revealing the 
POD as a well-established field. Overall, the techniques 
used most in the primary studies are primarily aligned 
with the techniques performing the best, except for the 
type of observation used. The DDs often offer the best 
accuracy; however, UD observations are more usual. We 
justify this difference due to the higher complexity of 
the POD techniques when using DDs, requiring multiple 
GNSS receivers from the user side. The accuracy obtained 
by several methods is in accordance with the satellite mis-
sion requirements, and future improvements may still be 
needed to meet the requirements of upcoming LEO–PNT 
satellites.

As for the implications for practitioners, this review 
found that none of the primary studies focused on indus-
try practice. This evidence may imply that there is limited 
cooperation between research and industry in the application 
of POD algorithms/techniques. Most often, the degree of 
match between the estimation contexts and the character-
istics of the chosen POD algorithm/technique directly and 
significantly impacts the performance of the POD estima-
tion accuracy. In making any decision on the type of POD 
algorithm/technique being used, practitioners need to be 
aware of the estimation contexts (orbit accuracy require-
ment) and understand the characteristics of the candidate 
POD algorithm/technique. Therefore, we suggest that the 
LEO industry should cooperate with researchers to investi-
gate promising POD algorithms/techniques considering real 
cases of contexts and requirements. In our future studies, we 
plan to address the issue of cost/budget for POD estimation 
of a satellite mission. This is because the studies used for 
this review were scientific and did not address the issue of 
cost or budget in their research.
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