822 research outputs found

    Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions.

    Get PDF
    A new explicit relation is proposed for the prediction of the enhancement factor for reversible reactions of finite rate in chemically loaded solutions which also allows for unequal diffusivities. The relation for the enhancement factor is not based on an approximation of the absorption process, but is derived from a similarity which can be observed between the results of the approximation for an irreversible (1,1) order reaction given by, for example, DeCoursey (surface renewal model), and the exact numerical results. The present relation combines the solution of DeCoursey (1974 Chem. Engng Sci. 29, 1867¿1872) for irreversible finite rate reactions, and the solution of Secor and Beutler (film model, 1967 A.I.Ch.E. J. 13, 365¿373) for instantaneous reversible reactions. The diffusivity ratios in the solution of Secor and Beutler (1967) were replaced by the roots of these ratios in order to adapt the enhancement factors to the penetration theory. In general, this adaptation of the solution of Secor and Beutler gave reasonably good results, however, for some situations with unequal diffusivities deviations up to 20% were found. The results of the present approximation were for various reactions compared to the numerical enhancement factors obtained for the model based on the Higbie penetration theory. Generally, the agreement was reasonably good. Only 26 of 2187 preselected simulations (1.18%) had a deviation which was larger than 20%, while the average deviation of all simulations was 3.3%. The deviations increased for solutions with a substantial chemical loading in combination with unequal diffusivities of the components. For reactions with a kinetic order unequal to unity, the Ha number had to be multiplied by a factor, ¿¿, so that Ea = ¿¿H aA in the regime 2 < HaA Ea,¿. This factor agreed well with the factor given by Hikita and Asai (1964, Int. Chem. Engng 4, 332¿340) in their dimensionless numbe

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
    corecore