114 research outputs found

    Stannous chloride catalyzed deprotection of tetrahydropyranyl ethers

    Get PDF
    211-21

    Colour-electric spectral function at next-to-leading order

    Full text link
    The spectral function related to the correlator of two colour-electric fields along a Polyakov loop determines the momentum diffusion coefficient of a heavy quark near rest with respect to a heat bath. We compute this spectral function at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The high-frequency part of our result (omega >> T), which is shown to be temperature-independent, is accurately determined thanks to asymptotic freedom; the low-frequency part of our result (omega << T), in which Hard Thermal Loop resummation is needed in order to cure infrared divergences, agrees with a previously determined expression. Our result may help to calibrate the overall normalization of a lattice-extracted spectral function in a perturbative frequency domain T << omega << 1/a, paving the way for a non-perturbative estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate the colour-electric Euclidean correlator, which could be directly compared with lattice simulations. As an aside we determine the Euclidean correlator in the lattice strong-coupling expansion, showing that through a limiting procedure it can in principle be defined also in the confined phase of pure Yang-Mills theory, even if a practical measurement could be very noisy there.Comment: 38 page

    Chiral unitary theory: application to nuclear problems

    Get PDF
    In this talk we briefly describe some basic elements of chiral perturbation theory, χPT\chi PT, and how the implementation of unitarity and other novel elements lead to a better expansion of the TT matrix for meson meson and meson baryon interactions. Applications are then done to the ππ \pi \pi interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and KK^- atoms, and how the ϕ\phi meson properties are changed in a nuclear medium.Comment: 15 pages, 9 figures, Invited talk in the International Symposium on Nuclear Physics, Bombay, december 200

    Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically-discovered Gamma-ray Burst Afterglows and New Constraints on the Kilonova Rate

    Get PDF
    While optical surveys regularly discover slow transients like supernovae on their own, the most common way to discover extragalactic fast transients, fading away in a few nights, is via follow-up observations of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to also identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to faint and fast-fading objects as kilonovae, the optical counterparts to binary neutron stars and neutron star-black hole mergers, out to almost 200Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast optical transients in ZTF data. Using the ZTF alert stream combined with forced photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering of follow-up systems, such as Las Cumbres Observatory, has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independent of any external trigger (though some counterparts were identified later), including at least one supernova with post-shock cooling emission, two known afterglows with an associated gamma-ray burst, two known afterglows without any known gamma-ray counterpart, and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, and ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects which appear to be kilonovae; therefore, we constrain the rate of GW170817-like kilonovae to R<900R < 900Gpc3^{-3}yr1^{-1}. A framework such as ZTFReST could become a prime tool for kilonova and fast transient discovery with the Vera C. Rubin Observatory

    Photoproduction of mesons off nuclei

    Full text link
    Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets

    IPTF Search for An Optical Counterpart to Gravitational-Wave TransientT GW150914

    Get PDF
    The American Astronomical Society. All rights reserved..The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg2, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves

    Heavy Ions at LHC: A Quest for Quark-Gluon Plasma

    Get PDF
    Quantum Chromo Dynamics (QCD), the theory of strong interactions, predicts a transition of the usual matter to a new phase of matter, called Quark-Gluon Plasma (QGP), at sufficiently high temperatures. The non-perturbative technique of defining a theory on a space-time lattice has been used to obtain this and other predictions about the nature of QGP. Heavy ion collisions at the Large Hadron Collider in CERN can potentially test these predictions and thereby test our theoretical understanding of confinement. This brief review aims at providing a glimpse of both these aspects of QGP.Comment: 26 pages, 31 Figures, Invited article for the volume on LHC physics to celebrate the Platinum Jubilee of the Indian National Science Academy, edited by Amitava Datta, Biswarup Mukhopadhyaya and Amitava Raychaudhuri. Needs style file insa.sty (included

    Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate

    Get PDF
    The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R &lt; 900 Gpc-3 yr-1 (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory

    BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways

    Get PDF
    The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leave

    The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

    Get PDF
    BACKGROUND: The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS: We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS: Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions
    corecore