1,034 research outputs found

    Vehicles Recognition Using Fuzzy Descriptors of Image Segments

    Full text link
    In this paper a vision-based vehicles recognition method is presented. Proposed method uses fuzzy description of image segments for automatic recognition of vehicles recorded in image data. The description takes into account selected geometrical properties and shape coefficients determined for segments of reference image (vehicle model). The proposed method was implemented using reasoning system with fuzzy rules. A vehicles recognition algorithm was developed based on the fuzzy rules describing shape and arrangement of the image segments that correspond to visible parts of a vehicle. An extension of the algorithm with set of fuzzy rules defined for different reference images (and various vehicle shapes) enables vehicles classification in traffic scenes. The devised method is suitable for application in video sensors for road traffic control and surveillance systems.Comment: The final publication is available at http://www.springerlink.co

    FORGOTTEN AULACOTHORAX BOHEMAN, 1858, A SENIOR SYNONYM OF ORTHALTICA CROTCH, 1873 (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI)

    Get PDF
    Discovery of the holotype of Aulacothorax exilis Boheman, 1858, originally described in Scydmaeninae (Staphylinidae), in the collections of Naturhistoriska Riksmuseet Stockholm in Sweden revealed that this species is actually a leaf beetle (Chrysomelidae) belonging to the genus until now known as Orthaltica Crotch, 1873. Because Aulacothorax has been available since 1858 and Orthaltica only since 1873, we here synonymize Orthaltica with Aulacothorax. Aulacothorax exilis is redescribed and illustrated

    A Generalization of the Convex Kakeya Problem

    Full text link
    Given a set of line segments in the plane, not necessarily finite, what is a convex region of smallest area that contains a translate of each input segment? This question can be seen as a generalization of Kakeya's problem of finding a convex region of smallest area such that a needle can be rotated through 360 degrees within this region. We show that there is always an optimal region that is a triangle, and we give an optimal \Theta(n log n)-time algorithm to compute such a triangle for a given set of n segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then placing the segments with their midpoint at the origin and taking their convex hull results in an optimal solution. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of every rotated copy of G.Comment: 14 pages, 9 figure

    Opaque Service Virtualisation: A Practical Tool for Emulating Endpoint Systems

    Full text link
    Large enterprise software systems make many complex interactions with other services in their environment. Developing and testing for production-like conditions is therefore a very challenging task. Current approaches include emulation of dependent services using either explicit modelling or record-and-replay approaches. Models require deep knowledge of the target services while record-and-replay is limited in accuracy. Both face developmental and scaling issues. We present a new technique that improves the accuracy of record-and-replay approaches, without requiring prior knowledge of the service protocols. The approach uses Multiple Sequence Alignment to derive message prototypes from recorded system interactions and a scheme to match incoming request messages against prototypes to generate response messages. We use a modified Needleman-Wunsch algorithm for distance calculation during message matching. Our approach has shown greater than 99% accuracy for four evaluated enterprise system messaging protocols. The approach has been successfully integrated into the CA Service Virtualization commercial product to complement its existing techniques.Comment: In Proceedings of the 38th International Conference on Software Engineering Companion (pp. 202-211). arXiv admin note: text overlap with arXiv:1510.0142

    Using unstructured profile information for gender classification of Portuguese and English

    Get PDF
    This paper reports experiments on automatically detecting the gender of Twitter users, based on unstructured information found on their Twitter profile. A set of features previously proposed is evaluated on two datasets of English and Portuguese users, and their performance is assessed using several supervised and unsupervised approaches, including Naive Bayes variants, Logistic Regression, Support Vector Machines, Fuzzy c-Means clustering, and k-means. Results show that features perform well in both languages separately, but even best results were achieved when combining both languages. Supervised approaches reached 97.9 % accuracy, but Fuzzy c-Means also proved suitable for this task achieving 96.4 % accuracy.info:eu-repo/semantics/acceptedVersio

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Comparative Assessment of Virtual Track Circuit Based on Image Processing

    Full text link

    FSL-BM: Fuzzy Supervised Learning with Binary Meta-Feature for Classification

    Full text link
    This paper introduces a novel real-time Fuzzy Supervised Learning with Binary Meta-Feature (FSL-BM) for big data classification task. The study of real-time algorithms addresses several major concerns, which are namely: accuracy, memory consumption, and ability to stretch assumptions and time complexity. Attaining a fast computational model providing fuzzy logic and supervised learning is one of the main challenges in the machine learning. In this research paper, we present FSL-BM algorithm as an efficient solution of supervised learning with fuzzy logic processing using binary meta-feature representation using Hamming Distance and Hash function to relax assumptions. While many studies focused on reducing time complexity and increasing accuracy during the last decade, the novel contribution of this proposed solution comes through integration of Hamming Distance, Hash function, binary meta-features, binary classification to provide real time supervised method. Hash Tables (HT) component gives a fast access to existing indices; and therefore, the generation of new indices in a constant time complexity, which supersedes existing fuzzy supervised algorithms with better or comparable results. To summarize, the main contribution of this technique for real-time Fuzzy Supervised Learning is to represent hypothesis through binary input as meta-feature space and creating the Fuzzy Supervised Hash table to train and validate model.Comment: FICC201

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information
    corecore