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Abstract. Segmentation of noisy images is one of the most challeng-
ing problems in image analysis and any improvement of segmentation
methods can highly influence the performance of many image process-
ing applications. In automated image segmentation, the fuzzy c-means
(FCM) clustering has been widely used because of its ability to model
uncertainty within the data, applicability to multi-modal data and fairly
robust behaviour. However, the standard FCM algorithm does not con-
sider any information about the spatial image context and is highly sen-
sitive to noise and other imaging artefacts. Considering above mentioned
problems, we developed a new FCM-based approach for the noise-robust
fuzzy clustering and we present it in this paper. In this new iterative
algorithm we incorporated both spatial and feature space information
into the similarity measure and the membership function. We considered
that spatial information depends on the relative location and features of
the neighbouring pixels. The performance of the proposed algorithm is
tested on synthetic image with different noise levels and real images. Ex-
perimental quantitative and qualitative segmentation results show that
our method efficiently preserves the homogeneity of the regions and is
more robust to noise than other FCM-based methods.
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1 Introduction

Image segmentation is often a critical component in many image applications
and is typically used to partition images into a set of non-overlapping, homo-
geneous regions with similar attributes such as intensity, texture, depth, color,
etc. The diversity of image applications have led to the development of various
segmentation techniques that vary in both algorithmic approach and the quality
and nature of the segmentation produced. Some applications require the image
to be segmented in details, while others require coarse homogeneous regions.
Since unsupervised fuzzy clustering is one of the most commonly used meth-
ods for automatic image segmentation [1, 2] and has been successfully applied
in fields such as astronomy, geology, medical and molecular imaging, it will be
considered in this paper.
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Fuzzy clustering methods involve the idea of partial membership and allow
pixels to belong to multiple classes with certain degree. This idea is very impor-
tant in applications where uncertainty, poor contrast, limited spatial resolution
and noise are present (e.g. satellite and medical images). Among fuzzy cluster-
ing methods, the fuzzy c-means (FCM) algorithm [3] is the most popular one.
However, the conventional FCM algorithm has a drawback, it classifies pixels in
the feature space without considering their spatial distribution in the image and
thus it is highly sensitive to noise.

To overcome above mentioned problem and reduce segmentation errors, many
extensions of the FCM algorithm have been proposed [4–9]. The most common
approach is to include spatial neighbourhood information by modifying the FCM
objective function [4, 5] or a similarity measure between cluster centres and
elements [6]. Ahmed et al. [4] modified the objective function of the standard
FCM algorithm to allow the immediate neighbours of the pixel to influence its
labelling. On the other hand, to keep the continuity from the FCM algorithm,
Shen et al. [6] introduced a new similarity measure that depends on spatial
neighbourhood information, where the degree of the neighbourhood attraction
is optimized by a neural network. Beside these modifications, there are also other
methods that can be used to enhance the FCM performance. For example, one
can combine the pixel-wise classification with preprocessing (noise cleaning in
the original image) [7, 10] and post-processing (noise cleaning on the classified
data). Xue et al. [10] proposed an algorithm where they firstly denoise images,
then classify the pixels using the standard FCM method and finally refine the
segmentation with post-processing filtering. All of these methods can reduce
the noise to a certain extent, but still have some drawbacks such as increased
complexity [4,6,9] and image smoothing [7,10] that can result in loss of important
image details.

In this paper, we present a new noise-robust FCM-based algorithm for image
segmentation. Our algorithm iteratively integrates spatial neighbourhood infor-
mation of the image elements (pixels) into both the similarity measure and the
membership function. The spatial information depends on the relative location,
intensities and membership degree values of the neighbouring pixels. The effi-
ciency of our method is tested on synthetic and real images with different noise
levels. Experimental results indicate that our method successfully reduces the
effect of noise and biases the algorithm toward homogeneous clustering.

The paper is organized as follows. In Section 2, we explain the standard
FCM method and our modified FCM algorithm. Experimental results together
with comparison with other methods are presented and discussed in Section 3.
Finally, we conclude this paper in Section 4.

2 Method

2.1 FCM algorithm

The FCM algorithm, initially developed by Dunn and later generalized by Bezdek
[3], is an iterative, unsupervised, soft classification method that can obtain much



more information from the original image than hard segmentation methods (e.g.
k-means). While hard segmentation methods classify pixels to belong exclusively
to one class, FCM allows pixels to belong to multiple classes with different mem-
bership degrees.

Let X = {xj , j = 1, 2, ..., N | xj ∈ Rq} represent feature vectors of the
image with N pixels that needs to be partitioned into C classes, where every
component of the vector xj represents a feature of the image at position j and
q is the dimension of the feature vector. The FCM clustering algorithm is based
on minimizing the following objective function:

Jm =
C∑

i=1

N∑
j=1

um
ijDij , (1)

where uij is the membership function of the feature xj belonging to the i-th
cluster, m is the weighting exponent that controls the fuzziness of the resulting
partition (most often is set to m = 2) and Dij = d2(xj ,vi) is the similarity
measure between xj and the i-th cluster center vi. The most commonly used
similarity measure is the squared Euclidean distance:

Dij = d2(xj ,vi) = ‖xj − vi‖2 . (2)

The objective function Jm (Eq. (1)) is minimized under the following con-
straints:

uij ∈ [0, 1],
C∑

i=1

uij = 1 ,∀j and 0 <
N∑

j=1

uij < N , ∀i , (3)

where low membership values are assigned to pixels far from the cluster centroid,
and high membership values to pixels close to the cluster centroid. Considering
the constraints uij from Eq. (3) and calculating the first derivatives of Jm with
respect to uij and vi and setting them to zero, results in two following conditions
for minimizing Jm:

uij =

[
C∑

k=1

(
Dij

Dkj

) 1
m−1

]−1

(4)

and

vi =

∑N
j=1 u

m
ij xj∑N

j=1u
m
ij

, (i = 1, 2, ..., C) . (5)

The FCM algorithm iteratively optimizes Jm, by evaluating Eq. (4) and
Eq. (5), until the following stop criterion is satisfied:

max
i∈[1,C]

‖v(l)
i − v(l+1)

i ‖∞ < ε , (6)

where l is the iteration index and ‖ · ‖∞ is the L∞ norm. Once a membership
value uij for each class i is assigned to each pixel j, a defuzzification of the fuzzy



clusters {Fk}Ck=1 into its crisp version {Hk}Ck=1 is done by assigning the pixel to
the class with the highest membership value as follows:

max
i∈[1,C]

(uij) = ukj =⇒ xj ∈ Hk . (7)

The main drawback of the standard FCM for image segmentation is that
the objective function does not take into account any spatial information and
deals with the pixels as separate points. Therefore, the standard FCM algorithm
is sensitive to outliers and very often those pixels are wrongly classified. To
illustrate this, we consider an example shown in Fig. 1, where we have a simple
synthetic image with two classes (grey background and white foreground) Fig. 1a.
The white foreground and the black background are corrupted by the noise
pixels, which have the same intensity value as the opposite class, the background
and the foreground respectively. The segmentation result using the FCM Fig. 1b
is affected by the noise pixels, while the desired segmentation result is shown in
Fig. 1c.

(a) (b) (c)

Fig. 1. Example: (a) a synthetic image with a noise, (b) the FCM segmentation result
and (c) the expected segmentation result.

2.2 Proposed method

One of the important characteristics of the image is that majority of its neigh-
bouring pixels have similar feature values and the probability that they belong
to the same cluster is great. Therefore, to improve the performance and over-
come the limitation of the standard FCM algorithm, we considered the spatial
neighbourhood information in our method.

If we look at the objective function of the FCM algorithm (Eq. (1)) and
its two necessary conditions for the convergence (Eq. (4) and Eq. (5)), we can
conclude that the segmentation result is significantly influenced by membership
values uij and the choice of the similarity measure Dij . The novelty of our
method is that in each iteration of the algorithm we modify both the similarity
measure and the membership values, in two separate steps, using the spatial



information of the neighbouring pixels. The new similarity measure includes the
intensity and distance of the neighbouring pixels, while the new membership
function is calculated using the membership degree values of the neighbouring
pixels weighted by their spatial position in the image. In the following lines we
explain these two steps in more details.

Firstly, we define the spatially dependent similarity measure as follows:

Dij = ‖xj − vi‖2(1− αSij), (8)

where Sij represents the spatial neighbourhood information and α ∈ [0, 1] is the
parameter that controls the relative importance of the neighbourhood attraction.
If α = 0, Dij is the squared Euclidean distance and we have the standard
FCM. The spatial information Sij depends on the feature attraction ajr (pixel
intensities) and the distance attraction djr (relative location of neighbouring
pixels), and is defined as:

Sij =

∑Nr

r=1 uirajrd
−1
jr∑Nr

r=1 ajrd
−1
jr

, (9)

where Nr is the number of neighbours surrounding the element xj in a square
window Ωj , and uir is the membership degree of the neighbouring element xr

to the cluster i. If we define the neighbourhood configuration Ωj as an n × n
square window with the central element xj , then r = n2 − 1 and Ωj = {xr|r =
1, 2, ..., n2− 1}. Feature attraction ajr is defined as the absolute intensity differ-
ence between xj and its neighbour xr

ajr = |xj − xr| . (10)

The distance attraction djr is the squared Euclidean distance between the coor-
dinates of elements x(pj , qj) and x(pr, qr)

djr = (pj − pr)2 + (qj − qr)2 . (11)

Secondly, after modifying the similarity measure, we calculate the member-
ship values using Eq.(4). Then, we use the spatial neighbourhood information
again to calculate the new spatially dependent membership values in the follow-
ing way:

u∗ij =
uijM

2
ij∑C

k=1 ukjM2
kj

(12)

and

Mij =
Nr∑
r=1

uird
−1
jr , (13)

where u∗ij is the new spatially dependent membership value, C is the number of
classes, Nr is the number of neighbours surrounding the element xj and Mij is
the spatial membership function that represents the probability that element xj

belongs to the cluster i.



In both equations, Eq. (9) and Eq. (13), the reciprocal of the distance d−1
jr

is used because the neighbours xr close to the central element xj should more
influence the result, while further neighbours should be less important.

The idea behind this new integration of spatial information in the FCM al-
gorithm is as follows. Consider the local n× n neighbourhood where the central
element xj has large intensity differences with the closest neighbouring elements
xr, which have similar intensities as the cluster center vi. After running the stan-
dard FCM algorithm, the neighbouring elements will be classified in a cluster i,
while the central element will be in a different cluster. However, if we consider
spatial information and calculate the neighbourhood attraction Sij , which will
be large in this case and the expression (1−αSij) will be small for α 6= 0, the new
spatially dependent similarity measure will be smaller than before. That means
that after one iteration of the algorithm the central element xj will be attracted
to the neighbouring cluster i. Next, if we calculate the new spatial membership
function Mij and update the membership values, we will get that in a homo-
geneous regions the new membership values stay unchanged, while for a noisy
pixel the new membership value is influenced by the labels of its neighbouring
pixels. In our case, the central element xj is then even stronger attracted to the
cluster i. If the neighbourhood attraction Sij and Mij are continuously large
till the end of the algorithm, the central element xj will be forced to belong
to the cluster i despite being dissimilar to it. Precisely, this property biases the
algorithm towards homogeneous clustering.

The outline of the proposed algorithm is:
Step1. Set the number of clusters C, degree of fuzziness m, stop criterion ε and
neighbourhood size.
Step2. Initialize the centres of the clusters vi|i = 1, 2, ..., C and using FCM
calculate uij .
Step3. Calculate the spatially dependent similarity measure Eq. (8).
Step4. Update uij using the new similarity measure Eq. (4).
Step5. Calculate the new membership values u∗ij using the spatial membership
function Eq. (12).
Step6. Update vi using new membership values u∗ij Eq. (5).
Repeat steps 3-6 until the stop criterion Eq.(6) is satisfied.

As with all clustering algorithms, the segmentation result may highly de-
pend on the choice of parameter values used for initialization. Therefore, we use
intensity-based thresholding [11] to reliably initialize the cluster centres.

3 Results

In this section, the experimental results of our algorithm to synthetic and real
images are presented. For all experiments we set the weighting exponent m = 2,
the stop criterion ε = 0.01, the neighbourhood size 3×3 and the parameter that
controls the effect of the neighbours α = 1.

To investigate the sensitivity of the proposed method to noise and to show the
quantitative comparative results with other FCM-based methods [3,4,6,10], we



use the synthetic image (size 128× 128) shown in Fig. 2g. It contains four-class
pattern with three different shapes and is corrupted by zero mean Gaussian
noise (Fig. 2a), where Signal-to-Noise Ratio (SNR) between the original and
noisy image is 12dB.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2. Results comparison of the five segmentation methods on a synthetic image
with four grey levels and three different shapes: (a) the image corrupted by zero mean
Gaussian noise (SNR=12dB); (b) the FCM method [3]; (c) Shen et al. method [6]; (d)
Ahmed et al. method [4]; (e) Xue et al. method [10]; (f) the segmentation result of our
algorithm; (g) the “ground truth” - original synthetic image.

As can be seen in Fig. 2b, the FCM algorithm [3] can not correctly classify
four classes and is highly sensitive to outliers. The methods of Shen et al. [6] and
Ahmed et al. [4], with results given in Fig. 2c and Fig. 2d respectively, although



incorporating spatial information, are not sufficient enough to segment the image
with very low SNR. The method from Xue et al. [10], which uses image filtering
before and after the segmentation, also does not give satisfactory result and still
contains artefacts and additional edge blurring (Fig. 2e). However, the result of
our method Fig. 2f shows good performance and achieves the best segmentation
result comparing with the “ground truth” image Fig. 2g.

In order to obtain a quantitative comparison, we plot the validation results
of five methods for different noise levels in Fig. 3. The similarity index ρ, used
for the comparison and quantitative evaluation, is the Dice coefficient:

ρ =
2|Ai

⋂
Bi|

|Ai|+ |Bi|
, (14)

where Ai and Bi denote the set of pixels labelled into i by the ”ground truth”
and our method respectively, and |Ai| denotes the number of elements in Ai. In
our experiment, the results for ρ are averaged over all four classes.
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Fig. 3. Validation result for different noise levels. Comparison of FCM [3], Ahmed et
al. [4], Xue et al. [10], Shen et al. [6] and our algorithm. From the graph, we can clearly
see that our algorithm outperforms the standard FCM and popular spatial clustering
variants, especially for the lower SNR.

From the Fig. 3 we can clearly see that our algorithm outperforms other
FCM-based methods and acquires the best segmentation performance for all
noise levels.

The performance of our algorithm is also demonstrated on four real images
corrupted with noise: the cameraman, a house, a CT (Computer Tomography)
image of the liver and an MRI (Magnetic Resonance Imege) of the brain. Seg-
mentation results of the FCM and our algorithm are shown in the figure Fig. 4.



(a) (b) (c)

Fig. 4. Segmentation results on four real images corrupted with noise. The first column
(a) shows noisy images, the second column (b) shows the results using FCM algorithm
and the third column (c) shows the segmentation performance of our algorithm. The
first two images, the cameraman and a house, are segmented in two and four labels
respectively. Next, the CT image of the liver is segmented in five labels. Finally, the
MRI of the brain, with a lesion on the upper-left side, is segmented in three labels.
Comparing the second and third columns, it is clear that our method is effective and
gives noise-free segmentation.



4 Conclusion

We have presented a new algorithm for unsupervised and automatic segmenta-
tion of images corrupted with noise. Our method is based on the FCM clustering
approach, feature space and spatial contextual information of the neighbouring
pixels in the image. The quantitative and qualitative experimental results for
simulated and real images show that our method is very efficient and can effec-
tively reduce the sensitivity of fuzzy segmentation algorithms to noise, without
blurring the image. Also, it is good at resolving classification ambiguity for data
in the overlapping region of two clusters. Our method could be useful in appli-
cations such as image texture segmentation, medical image segmentation and
multispectral image segmentation, where spatial contextual information is im-
portant.
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