150 research outputs found

    SAGA: A DSL for Story Management

    Full text link
    Video game development is currently a very labour-intensive endeavour. Furthermore it involves multi-disciplinary teams of artistic content creators and programmers, whose typical working patterns are not easily meshed. SAGA is our first effort at augmenting the productivity of such teams. Already convinced of the benefits of DSLs, we set out to analyze the domains present in games in order to find out which would be most amenable to the DSL approach. Based on previous work, we thus sought those sub-parts that already had a partially established vocabulary and at the same time could be well modeled using classical computer science structures. We settled on the 'story' aspect of video games as the best candidate domain, which can be modeled using state transition systems. As we are working with a specific company as the ultimate customer for this work, an additional requirement was that our DSL should produce code that can be used within a pre-existing framework. We developed a full system (SAGA) comprised of a parser for a human-friendly language for 'story events', an internal representation of design patterns for implementing object-oriented state-transitions systems, an instantiator for these patterns for a specific 'story', and three renderers (for C++, C# and Java) for the instantiated abstract code.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Manipulating the salience of stimulus & response features in the spatial precuing task

    Get PDF
    Reeve, Proctor, Weeks and Dornier (1992) demonstrated that the Gestalt grouping principles could be used to influence performance in the four-choice spatial-precuing task by enhancing the organizational features of the stimulus and response sets. Reeve et al. (1992), concluded that the most effective manipulations may be limited to those involving the stimulus set. The two present experiments attempted to enhance the organizational features of the stimulus-response (S-R) sets by increasing the response ensemble's salience through the use of textures placed according to the Gestalt principles as used by Reeve et al. (1992). Both experiments confirmed the previous findings of Reeve et al., reaffirming that the relative salience of stimulus set features is a powerful determinant of the coding operations that occur during the translation stage of information processing. Furthermore, the results indicated that, although perhaps not as powerful, manipulation of response set organization through the use of textures can produce results consistent with those obtained with the stimulus set manipulations

    Transition Physics and Boundary-Layer Stability: Computational Modeling in Compressible Flow

    Get PDF
    Laminar-to-turbulent transition of boundary layers remains a critical subject of study in aerodynamics. The differences in surface friction and heating between laminar and turbulent flows can be nearly an order of magnitude. Accurate prediction of the transition region between these two regimes is essential for design applications. The objective of this work is to advance simplified approaches to representing the laminar boundary layer and perturbation dynamics that usher flows to turbulence. A versatile boundary-layer solver called DEKAF including thermochemical effects has been created, and the in-house nonlinear parabolized stability equation technique called EPIC has been advanced, including an approach to reduce divergent growth associated with the inclusion of the mean-flow distortion. The simplified approaches are then applied to advance studies in improving aircraft energy efficiency. Under the auspices of a NASA University Leadership Initiative, the transformative technology of a swept, slotted, natural-laminar-flow wing is leveraged to maintain laminar flow over large extents of the wing surface, thereby increasing energy efficiency. From an aircraft performance perspective, sweep is beneficial as it reduces the experienced wave drag. From a boundary-layer transition perspective, though, sweep introduces several physical complications, spawned by the crossflow instability mechanism. As sweep is increased, the crossflow mechanism becomes increasingly unstable, and can lead to an early transition to turbulence. The overarching goal of the present analysis then is to address the question, how much sweep can be applied to this wing while maintaining the benefits of the slotted, natural-laminar-flow design? Linear and nonlinear stability analyses will be presented to assess various pathways to turbulence. In addition, companion computations are presented to accompany the risk-reduction experiment run in the Klebanoff-Saric Wind Tunnel at Texas A&M University. Linear analyses assess a wide range of various configurations to inform experimentalists where relevant unstable content resides. A comparison between simulation and experimental measurements is presented, for which there is a good agreement

    The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum

    No full text
    Hydrogen sulphide (H2S) has been recently proposed as a transmitter in the brain and peripheral tissues. Its role in the gastrointestinal tract is still unknown despite some data which suggest an involvement mediating smooth muscle relaxation. The aim of this study was to investigate the effect of this gas on intestinal segments from mouse jejunum and colon, and muscular strips from the human and rat colon. In isolated segments of mouse colon and jejunum, bath applied sodium hydrogen sulphide (NaHS) (a H2S donor) caused a concentration-dependent inhibition of spontaneous motor complexes (MCs) (IC50 121 μmol L-1 in the colon and 150 μmol L-1 in the jejunum). This inhibitory effect of NaHS on MCs was (i) unaffected by tetrodotoxin (TTX), capsaicin, pyridoxal-phosphate- 6-azophenyl-2',4'-disulfonate and N-nitro-l-arginine suggesting a non-neural effect and (ii) significantly reduced by apamin 3 μmol L -1. NaHS concentration-dependently inhibited the spontaneous motility in strips from human colon (IC50 261 μmol L-1) and rat colon (IC50 31 μmol L-1). The inhibitory effect of NaHS on colonic strips was (i) unaffected by the neural blocker TTX (1 μmol L-1) with IC50 183 μmol L-1 for the human colon and of 26 μmol L-1 for the rat colon and (ii) significantly reduced by glybenclamide (10 μmol L-1), apamin (3 μmol L -1) and TEA (10 mmol L-1) with IC50 values of 2464, 1307 and 2421 μmol L-1 for human strips, and 80, 167 and 674 μmol L-1 for rat strips respectively. We conclude that H 2S strongly inhibits in vitro intestinal and colonic motor patterns. This effect appears to be critically dependent on K channels particularly apamin-sensitive SK channels and glybenclamide-sensitive K (ATP) channels. © 2008 The Authors

    Fundamentals of neurogastroenterology: Basic science

    Get PDF
    This review examines the fundamentals of neurogastroenterology that may underlie the pathophysiology of functional GI disorders (FGIDs). It was prepared by an invited committee of international experts and represents an abbreviated version of their consensus document that will be published in its entirety in the forthcoming book and online version entitled Rome IV. It emphasizes recent advances in our understanding of the enteric nervous system, sensory physiology underlying pain, and stress signaling pathways. There is also a focus on neuroimmmune signaling and intestinal barrier function, given the recent evidence implicating the microbiome, diet, and mucosal immune activation in FGIDs. Together, these advances provide a host of exciting new targets to identify and treat FGIDs, and new areas for future research into their pathophysiology

    Extrinsic primary afferent signalling in the gut

    Get PDF
    Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular–mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.Australian National Health and Medical Research Counci

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Identifying the ion channels responsible for signaling gastro-intestinal based pain

    Get PDF
    We are normally unaware of the complex signalling events which continuously occur within our internal organs. Most of us only become cognisant when sensations of hunger, fullness, urgency or gas arise. However, for patients with organic and functional bowel disorders pain is an unpleasant and often debilitating reminder. Furthermore, chronic pain still represents a large unmet need for clinical treatment. Consequently, chronic pain has a considerable economic impact on health care systems and the afflicted individuals. In order to address this need we must understand how symptoms are generated within the gut, the molecular pathways responsible for generating these signals and how this process changes in disease states.Stuart M. Brierley, Patrick A. Hughes, Andrea M. Harrington, Grigori Y. Rychkov and L. Ashley Blacksha
    corecore