871 research outputs found

    Three-dimensional simulations of rotationally-induced line variability from a Classical T Tauri star with a misaligned magnetic dipole

    Full text link
    We present three-dimensional (3-D) simulations of rotationally induced line variability arising from complex circumstellar environment of classical T Tauri stars (CTTS) using the results of the 3-D magnetohydrodynamic (MHD) simulations of Romanova et al., who considered accretion onto a CTTS with a misaligned dipole magnetic axis with respect to the rotational axis. The density, velocity and temperature structures of the MHD simulations are mapped on to the radiative transfer grid, and corresponding line source function and the observed profiles of neutral hydrogen lines (H-beta, Pa-beta and Br-gamma) are computed using the Sobolev escape probability method. We study the dependency of line variability on inclination angles (i) and magnetic axis misalignment angles (Theta). By comparing our models with the Pa-beta profiles of 42 CTTS observed by Folha & Emerson, we find that models with a smaller misaligngment angle (Theta<~15 deg.) are more consistent with the observations which show that majority of Pa-beta are rather symmetric around the line centre. For a high inclination system with a small dipole misalignment angle (Theta ~ 15 deg.), only one accretion funnel (on the upper hemisphere) is visible to an observer at any given rotational phase. This can cause an anti-correlation of the line equivalent width in the blue wing (v0) over a half of a rotational period, and a positive correlation over other half. We find a good overall agreement of the line variability behaviour predicted by our model and those from observations. (Abridged)Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. A version with full resolution figures can be downloaded from http://www.physics.unlv.edu/~rk/preprint/inclined_dipole.pd

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X109\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Partial-wave analysis of ppppπ\vec{p}\vec{p}\to pp\pi^\circ data

    Full text link
    We present a partial-wave analysis of the polarization data for the reaction ppppπ\vec{p}\vec{p}\to pp\pi^\circ, based solely on the recent measurements at IUCF for this channel. The fit leads to a χ2\chi^2 per degree of freedom of 1.7. Methods for an improved analysis are discussed. We compare the extracted values to those from a meson exchange model.Comment: 14 pages, 11 figure

    Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments

    Get PDF
    In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such DNA looping interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified (diffusive) hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern

    First Constraints on Iron Abundance versus Reflection Fraction from the Seyfert~1 Galaxy MCG--6-30-15

    Full text link
    We report on a joint ASCA and RXTE observation spanning an \sim 400~ks time interval of the bright Seyfert~1 galaxy MCG--6-30-15. The data clearly confirm the presence of a broad skewed iron line (WKαW_{K\alpha} \sim 266 eV) and Compton reflection continuum at higher energies reported in our previous paper. We also investigate whether the gravitational and Doppler effects that affect the iron line may also be manifest in the reflected continuum. The uniqueness of this data set is underlined by the extremely good statistics that we obtain from the approximately four million photons that make up the 2-20 keV RXTE PCA spectrum alone. This, coupled with the high energy coverage of HEXTE and the spectral resolution of ASCA in the iron line regime has allowed us to constrain the relationship between abundance and reflection fraction for the first time at the 99 per cent confidence level. The reflection fraction is entirely consistent with a flat disk, i.e. the cold material subtends 2π\rm 2 \pi sr at the source, to an accuracy of 20 per cent. Monte Carlo simulations show that the observed strong iron line intensity is explained by an overabundance of iron by a factor of \sim 2 and an underabundance of the lower-Z elements by a similar factor. By considering non-standard abundances, a clear and consistent picture can be made in which both the iron line and reflection continuum come from the same material such as e.g. an accretion disk.Comment: 8 pages, 8 figures, accepted for publication MNRAS 7/9

    A Revised Orbital Ephemeris for HAT-P-9b

    Full text link
    We present here three transit observations of HAT-P-9b taken on 14 February 2010, 18 February 2010, and 05 April 2010 UT from the University of Arizona's 1.55 meter Kuiper telescope on Mt. Bigelow. Our transit light curves were obtained in the I filter for all our observations, and underwent the same reduction process. All three of our transits deviated significantly (approximately 24 minutes earlier) from the ephemeris of Shporer et al. (2008). However, due to the large time span between our observed transits and those of Shporer et al. (2008), a 6.5 second (2 sigma) shift downwards in orbital period from the value of Shporer et al. (2008) is sufficient to explain all available transit data. We find a new period of 3.922814 +/- 0.000002 days for HAT-P-9b with no evidence for significant nonlinearities in the transit period.Comment: 10 pages, 3 figure

    Strategies for choosing path-entangled number states for optimal robust quantum optical metrology in the presence of loss

    Get PDF
    To acquire the best path-entangled photon Fock states for robust quantum optical metrology with parity detection, we calculate phase information from a lossy interferometer by using twin entangled Fock states. We show that (a) when loss is less than 50% twin entangled Fock states with large photon number difference give higher visibility while when loss is higher than 50% the ones with less photon number difference give higher visibility; (b) twin entangled Fock states with large photon number difference give sub-shot-noise limit sensitivity for phase detection in a lossy environment. This result provides a reference on what particular path-entangled Fock states are useful for real world metrology applications

    Testing non-standard cosmological models with supernovae

    Full text link
    In this work we study the magnitude-redshift relation of a non-standard cosmological model. The model under consideration was firstly investigated within a special case of metric-affine gravity (MAG) and was recently recovered via different approaches by two other groups. Apart from the usual cosmological parameters for pressure-less matter Ωm\Omega_{\rm m}, cosmological constant/dark energy Ωλ\Omega_{\lambda}, and radiation Ωr\Omega_{\rm r} a new density parameter Ωψ\Omega_\psi emerges. The field equations of the model reduce to a system which is effectively given by the usual Friedmann equations of general relativity, supplied by a correction to the energy density and pressure in form of Ωψ\Omega_\psi, which is related to the non-Riemannian structure of the underlying spacetime. We search for the best-fit parameters by using recent SN Ia data sets and constrain the possible contribution of a new dark-energy like component at low redshifts, thereby we put an upper limit on the presence of non-Riemannian quantities in the late stages of the universe. In addition the impact of placing the data in redshift bins of variable size is studied. The numerical results of this work also apply to several anisotropic cosmological models which, on the level of the field equations, exhibit a similar scaling behavior of the density parameters like our non-Riemannian model.Comment: 21 pages, 10 figures, uses IOP preprint style, submitted to Class. Quantum Gra

    The massive star binary fraction in young open clusters - II. NGC 6611 (Eagle Nebula)

    Get PDF
    Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte-Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is f_min=0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75% of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC6611, despite the difference in age and environment of the two clusters.Comment: Accepted by MNRAS; 15 pages, 17 fi
    corecore